ELOQUENT
JAVASCRIPT

THIRD EDITION

A Modern Introduction
to Programming

Marijn Haverbeke

ELOQUENT JAVASCRIPT

3RD EDITION

Marijn Haverbeke

Copyright © 2018 by Marijn Haverbeke

This work is licensed under a Creative Commons attribution-noncommercial
license (http://creativecommons.org/licenses/by-nc/3.0/). All code in the
book may also be considered licensed under an MIT license (http://opensource.
org/licenses/MIT).

The illustrations are contributed by various artists: Cover and chapter illus-
trations by Madalina Tantareanu. Pixel art in Chapters 7 and 16 by Antonio
Perdomo Pastor. Regular expression diagrams in Chapter 9 generated with
regexper.com by Jeff Avallone. Village photograph in Chapter 11 by Fabrice
Creuzot. Game concept for Chapter 15 by Thomas Palef.

The third edition of Eloquent JavaScript was made possible by 325 financial
backers.

You can buy a print version of this book, with an extra bonus chapter included,
printed by No Starch Press at http://a-fwd.com/com=marijhaver-20&asin-
com=1593279507.

http://creativecommons.org/licenses/by-nc/3.0/
http://opensource.org/licenses/MIT
http://opensource.org/licenses/MIT
http://regexper.com
http://lessmilk.com
https://eloquentjavascript.net/backers3.html
https://eloquentjavascript.net/backers3.html
http://a-fwd.com/com=marijhaver-20&asin-com=1593279507
http://a-fwd.com/com=marijhaver-20&asin-com=1593279507

CONTENTS

Introduction
On programming
Why language matters

Code, and what to dowith it
Overview of this book
Typographic conventions

1 Values, Types, and Operators
Values e
Numbers
SErings
Unary operators
Boolean values
Empty values.
Automatic type conversion
SUMMATY oot

2 Program Structure
Expressions and statements 0L L
Bindings
Binding names
The environment
Functions
The console.log function
Return values
Control flow
Conditional execution L
while and doloops.
Indenting Code
forloops
Breaking Out of a Loop

11

Updating bindings succinctly 34

Dispatching on a value with switch 34
Capitalization 35
Comments 36
SUMMATY oo 37
Exercises 37
Functions 39
Defining a function Lo 39
Bindings and scopes 40
Functions as values 42
Declaration notation 43
Arrow functions 44
The call stack 45
Optional Arguments. 46
Closure e 47
Recursion 49
Growing functions 51
Functions and side effects 54
SUMMATY © . . o v v v v e e e e e e e e 55
Exercises 55
Data Structures: Objects and Arrays 57
The weresquirrel 57
Datasets o8
Properties 59
Methods 60
Objects 61
Mutability o 63
The lycanthrope’slog 64
Computing correlation 66
Array loops 68
The final analysis 68
Further arrayology 70
Strings and their properties L. 72
Rest parameters 74
The Math object 75
Destructuring 76
JSON o 7
SUMMATY oo 78

111

Exercises 79

Higher-Order Functions 82
Abstraction 83
Abstracting repetition L 83
Higher-order functions 85
Script dataset 86
Filtering arrays 87
Transforming with map 88
Summarizing with reduce oL 88
Composability 90
Strings and character codes 91
Recognizing text 93
SUMMATY oo 95
Exercises 95
The Secret Life of Objects 97
Encapsulation 97
Methods 98
Prototypes 99
Classes e 101
Class notation 102
Overriding derived properties 103
Maps 104
Polymorphism 106
Symbols 107
The iterator interface 108
Getters, setters, and statics L. 110
Inheritance 112
The instanceof operator. 113
SUMMATY oo 114
Exercises 115
Project: A Robot 117
Meadowfield 117
The task 119
Persistent data 121
Simulation 122
The mail truck’s route 124
Pathfinding 124

iv

Exercises 126

Bugs and Errors 128
Language 128
Strict mode 129
Types . . . o 130
Testing e 131
Debugging 132
Error propagation 134
Exceptions 135
Cleaning up after exceptions 136
Selective catching 138
Assertions L 140
SUMMATY oo 141
Exercises 142
Regular Expressions 143
Creating a regular expression 143
Testing for matches 144
Sets of characters 144
Repeating parts of a pattern L. 146
Grouping subexpressions 147
Matches and groups 147
The Dateclass 148
Word and string boundaries 150
Choice patterns L 150
The mechanics of matching 151
Backtrackingo 152
The replace method 154
Greed e 155
Dynamically creating Regkxp objects 157
The search method 157
The lastIndex property 158
Parsing an INI file 160
International characters. 162
SUMMATY oot e 163
Exercises 165
Modules 167
Modules 167

Packages
Improvised modules
Evaluating data ascode
CommonlJS
ECMAScript modules
Building and bundling
Module design
SUMMATY oot
Exercises

11 Asynchronous Programming
Asynchronicity
Crow tech
Callbacks
Promises
Failure
Networks are hard
Collections of promises
Network flooding
Message routing e
Async functionso
Generators
The event loop
Asynchronous bugs
SUMMATY oot
Exercises

12 Project: A Programming Language
Parsing
The evaluator
Special forms
The environment
Functions
Compilation
Cheating
Exercises

13 JavaScript and the Browser
Networks and the Internet
The Web

vi

14

15

HTML . oo 218

HTML and JavaScript 221
In thesandbox 222
Compatibility and the browser wars 222
The Document Object Model 224
Document structure 224
Trees e 225
The standard 226
Moving through the tree 227
Finding elements 228
Changing the document 229
Creatingnodes 230
Attributes 232
Layout 233
Styling 235
Cascading styles 236
Query selectors 237
Positioning and animating L. 238
SUIMIMNATY o v e e e e e e 241
Exercises 241
Handling Events 243
Event handlers 243
Events and DOM nodes 244
Event objects 245
Propagation 245
Default actions 247
Keyevents 247
Pointer events 249
Scroll events 253
Focusevents 254
Load event 255
Events and the event loop 255
Timers e 257
Debouncing 257
SUMMATY o o 259
Exercises 259

vii

16

17

18

Project: A Platform Game

The game
The technology
Levels
Reading alevel
Actors
Encapsulation as a burden
Drawing
Motion and collision.
Actor updates
Tracking keys
Running the game
Exercises

Drawing on Canvas

SVG
The canvas element
Lines and surfaces
Paths
Curves
Drawing a pie chart
Text
Images
Transformation
Storing and clearing transformations
Back to the game
Choosing a graphics interface
Summary
Exercises

HTTP and Forms

The protocol
Browsers and HTTP
Fetch
HTTP sandboxing
Appreciating HTTP
Security and HTTPS
Form fields
Focus
Disabled fields

Vviil

19

20

21

The form as a whole, .
Text fields
Checkboxes and radio buttons
Select fields
File fields
Storing data client-side Lo
SUMMATY © . . v v v v v e e e e e e e e
Exercises

Project: A Pixel Art Editor

Components
The state
DOM building
The canvas e
The application
Drawing tools
Saving and loading
Undo history
Let’'sdraw
Why is this so hard?
Exercises

Node.js
Background
The node command

Installing with NPM
The file system module
The HTTP module,
Streams L
Afileserver
SUMMATY oot
Exercises

Project: Skill-Sharing Website

Design.
Long polling
HTTP interface
The server e
The client

ix

Exercises 387

Exercise Hints 388
Program Structure 388
Functions 389
Data Structures: Objects and Arrays 390
Higher-Order Functions 392
The Secret Life of Objects 393
Project: A Robot 394
Bugs and Errors 395
Regular Expressions oo 395
Modules 396
Asynchronous Programming 398
Project: A Programming Language 399
The Document Object Model 400
Handling Events 400
Project: A Platform Game 402
Drawing on Canvas 402
HTTP and Forms 404
Project: A Pixel Art Editor 406
Node.js o 408
Project: Skill-Sharing Website 409

“We think we are creating the system for our own purposes. We
believe we are making it in our own image... But the computer is
not really like us. It is a projection of a very slim part of ourselves:
that portion devoted to logic, order, rule, and clarity.”
—Ellen Ullman, Close to the Machine: Technophilia and its
Discontents

INTRODUCTION

This is a book about instructing computers. Computers are about as common
as screwdrivers today, but they are quite a bit more complex, and making them
do what you want them to do isn’t always easy.

If the task you have for your computer is a common, well-understood one,
such as showing you your email or acting like a calculator, you can open the
appropriate application and get to work. But for unique or open-ended tasks,
there probably is no application.

That is where programming may come in. Programming is the act of con-
structing a program—a set of precise instructions telling a computer what to do.
Because computers are dumb, pedantic beasts, programming is fundamentally
tedious and frustrating.

Fortunately, if you can get over that fact, and maybe even enjoy the rigor
of thinking in terms that dumb machines can deal with, programming can be
rewarding. It allows you to do things in seconds that would take forever by
hand. It is a way to make your computer tool do things that it couldn’t do
before. And it provides a wonderful exercise in abstract thinking.

Most programming is done with programming languages. A programming
language is an artificially constructed language used to instruct computers. It
is interesting that the most effective way we’ve found to communicate with a
computer borrows so heavily from the way we communicate with each other.
Like human languages, computer languages allow words and phrases to be
combined in new ways, making it possible to express ever new concepts.

At one point language-based interfaces, such as the BASIC and DOS prompts
of the 1980s and 1990s, were the main method of interacting with computers.
They have largely been replaced with visual interfaces, which are easier to learn
but offer less freedom. Computer languages are still there, if you know where
to look. One such language, JavaScript, is built into every modern web browser
and is thus available on almost every device.

This book will try to make you familiar enough with this language to do
useful and amusing things with it.

ON PROGRAMMING

Besides explaining JavaScript, I will introduce the basic principles of program-
ming. Programming, it turns out, is hard. The fundamental rules are simple
and clear, but programs built on top of these rules tend to become complex
enough to introduce their own rules and complexity. You're building your own
magze, in a way, and you might just get lost in it.

There will be times when reading this book feels terribly frustrating. If you
are new to programming, there will be a lot of new material to digest. Much of
this material will then be combined in ways that require you to make additional
connections.

It is up to you to make the necessary effort. When you are struggling to follow
the book, do not jump to any conclusions about your own capabilities. You are
fine—you just need to keep at it. Take a break, reread some material, and make
sure you read and understand the example programs and exercises. Learning is
hard work, but everything you learn is yours and will make subsequent learning
easier.

When action grows unprofitable, gather information; when infor-
mation grows unprofitable, sleep.

—Ursula K. Le Guin, The Left Hand of Darkness

A program is many things. It is a piece of text typed by a programmer,
it is the directing force that makes the computer do what it does, it is data
in the computer’s memory, yet it controls the actions performed on this same
memory. Analogies that try to compare programs to objects we are familiar
with tend to fall short. A superficially fitting one is that of a machine—lots of
separate parts tend to be involved, and to make the whole thing tick, we have
to consider the ways in which these parts interconnect and contribute to the
operation of the whole.

A computer is a physical machine that acts as a host for these immaterial
machines. Computers themselves can do only stupidly straightforward things.
The reason they are so useful is that they do these things at an incredibly
high speed. A program can ingeniously combine an enormous number of these
simple actions to do very complicated things.

A program is a building of thought. It is costless to build, it is weightless,
and it grows easily under our typing hands.

But without care, a program’s size and complexity will grow out of control,
confusing even the person who created it. Keeping programs under control is
the main problem of programming. When a program works, it is beautiful. The

art of programming is the skill of controlling complexity. The great program
is subdued—made simple in its complexity.

Some programmers believe that this complexity is best managed by using
only a small set of well-understood techniques in their programs. They have
composed strict rules (“best practices”) prescribing the form programs should
have and carefully stay within their safe little zone.

This is not only boring, it is ineffective. New problems often require new
solutions. The field of programming is young and still developing rapidly, and
it is varied enough to have room for wildly different approaches. There are
many terrible mistakes to make in program design, and you should go ahead
and make them so that you understand them. A sense of what a good program
looks like is developed in practice, not learned from a list of rules.

WHY LANGUAGE MATTERS

In the beginning, at the birth of computing, there were no programming lan-
guages. Programs looked something like this:

00110001 00000000 00000000
00110001 00000001 00000001
00110011 00000001 00000010
01010001 00001011 00000010
00100010 00000010 00001000
01000011 00000001 00000000
01000001 00000001 00000001
00010000 00000010 00000000
01100010 00000000 00000000

That is a program to add the numbers from 1 to 10 together and print out
the result: 1 + 2 + ... + 10 = 55. It could run on a simple, hypothetical
machine. To program early computers, it was necessary to set large arrays of
switches in the right position or punch holes in strips of cardboard and feed
them to the computer. You can probably imagine how tedious and error-prone
this procedure was. Even writing simple programs required much cleverness
and discipline. Complex ones were nearly inconceivable.

Of course, manually entering these arcane patterns of bits (the ones and
zeros) did give the programmer a profound sense of being a mighty wizard.
And that has to be worth something in terms of job satisfaction.

Each line of the previous program contains a single instruction. It could be
written in English like this:

1. Store the number 0 in memory location 0.

2. Store the number 1 in memory location 1.

3. Store the value of memory location 1 in memory location 2.
4. Subtract the number 11 from the value in memory location 2.

5. If the value in memory location 2 is the number 0, continue with instruc-
tion 9.

Add the value of memory location 1 to memory location 0.
Add the number 1 to the value of memory location 1.

Continue with instruction 3.

© »®» N @

Output the value of memory location 0.

Although that is already more readable than the soup of bits, it is still rather
obscure. Using names instead of numbers for the instructions and memory
locations helps.

Set “total” to 0.

Set “count” to 1.

[loop]

Set “compare” to “count”.
Subtract 11 from “compare”.
If “compare” is zero, continue at [end].
Add “count” to “total”.

Add 1 to “count”.

Continue at [loopl].

[end]

Output “total”.

Can you see how the program works at this point? The first two lines give
two memory locations their starting values: total will be used to build up the
result of the computation, and count will keep track of the number that we are
currently looking at. The lines using compare are probably the weirdest ones.
The program wants to see whether count is equal to 11 to decide whether it
can stop running. Because our hypothetical machine is rather primitive, it can
only test whether a number is zero and make a decision based on that. So it
uses the memory location labeled compare to compute the value of count - 11
and makes a decision based on that value. The next two lines add the value

of count to the result and increment count by 1 every time the program has
decided that count is not 11 yet.
Here is the same program in JavaScript:

let total = @, count = 1;
while (count <= 10) {
total += count;

count += 1;
}
console.log(total);
// = 55

This version gives us a few more improvements. Most important, there is
no need to specify the way we want the program to jump back and forth
anymore. The while construct takes care of that. It continues executing the
block (wrapped in braces) below it as long as the condition it was given holds.
That condition is count <= 10, which means “count is less than or equal to 10”.
We no longer have to create a temporary value and compare that to zero, which
was just an uninteresting detail. Part of the power of programming languages
is that they can take care of uninteresting details for us.

At the end of the program, after the while construct has finished, the console
.log operation is used to write out the result.

Finally, here is what the program could look like if we happened to have
the convenient operations range and sum available, which respectively create a
collection of numbers within a range and compute the sum of a collection of
numbers:

console.log(sum(range(1, 10)));
// - 55

The moral of this story is that the same program can be expressed in both
long and short, unreadable and readable ways. The first version of the program
was extremely obscure, whereas this last one is almost English: log the sum of
the range of numbers from 1 to 10. (We will see in later chapters how to define
operations like sum and range.)

A good programming language helps the programmer by allowing them to
talk about the actions that the computer has to perform on a higher level.
It helps omit details, provides convenient building blocks (such as while and
console.log), allows you to define your own building blocks (such as sum and
range), and makes those blocks easy to compose.

WHAT IS JAVASCRIPT?

JavaScript was introduced in 1995 as a way to add programs to web pages in the
Netscape Navigator browser. The language has since been adopted by all other
major graphical web browsers. It has made modern web applications possible—
applications with which you can interact directly without doing a page reload
for every action. JavaScript is also used in more traditional websites to provide
various forms of interactivity and cleverness.

It is important to note that JavaScript has almost nothing to do with the
programming language named Java. The similar name was inspired by mar-
keting considerations rather than good judgment. When JavaScript was being
introduced, the Java language was being heavily marketed and was gaining
popularity. Someone thought it was a good idea to try to ride along on this
success. Now we are stuck with the name.

After its adoption outside of Netscape, a standard document was written
to describe the way the JavaScript language should work so that the various
pieces of software that claimed to support JavaScript were actually talking
about the same language. This is called the ECMAScript standard, after the
Ecma International organization that did the standardization. In practice, the
terms ECMAScript and JavaScript can be used interchangeably—they are two
names for the same language.

There are those who will say terrible things about JavaScript. Many of these
things are true. When I was required to write something in JavaScript for the
first time, I quickly came to despise it. It would accept almost anything I typed
but interpret it in a way that was completely different from what I meant. This
had a lot to do with the fact that I did not have a clue what I was doing, of
course, but there is a real issue here: JavaScript is ridiculously liberal in what
it allows. The idea behind this design was that it would make programming in
JavaScript easier for beginners. In actuality, it mostly makes finding problems
in your programs harder because the system will not point them out to you.

This flexibility also has its advantages, though. It leaves space for a lot of
techniques that are impossible in more rigid languages, and as you will see
(for example in Chapter 10), it can be used to overcome some of JavaScript’s
shortcomings. After learning the language properly and working with it for a
while, I have learned to actually like JavaScript.

There have been several versions of JavaScript. ECMAScript version 3 was
the widely supported version in the time of JavaScript’s ascent to dominance,
roughly between 2000 and 2010. During this time, work was underway on
an ambitious version 4, which planned a number of radical improvements and
extensions to the language. Changing a living, widely used language in such a

radical way turned out to be politically difficult, and work on the version 4 was
abandoned in 2008, leading to a much less ambitious version 5, which made
only some uncontroversial improvements, coming out in 2009. Then in 2015
version 6 came out, a major update that included some of the ideas planned
for version 4. Since then we’ve had new, small updates every year.

The fact that the language is evolving means that browsers have to constantly
keep up, and if you're using an older browser, it may not support every feature.
The language designers are careful to not make any changes that could break
existing programs, so new browsers can still run old programs. In this book,
I'm using the 2017 version of JavaScript.

Web browsers are not the only platforms on which JavaScript is used. Some
databases, such as MongoDB and CouchDB, use JavaScript as their scripting
and query language. Several platforms for desktop and server programming,
most notably the Node.js project (the subject of Chapter 20), provide an envi-
ronment for programming JavaScript outside of the browser.

CODE, AND WHAT TO DO WITH IT

Code is the text that makes up programs. Most chapters in this book contain
quite a lot of code. I believe reading code and writing code are indispensable
parts of learning to program. Try to not just glance over the examples—read
them attentively and understand them. This may be slow and confusing at
first, but I promise that you’ll quickly get the hang of it. The same goes for
the exercises. Don’t assume you understand them until you’ve actually written
a working solution.

I recommend you try your solutions to exercises in an actual JavaScript
interpreter. That way, you’ll get immediate feedback on whether what you are
doing is working, and, I hope, you’ll be tempted to experiment and go beyond
the exercises.

The easiest way to run the example code in the book, and to experiment with
it, is to look it up in the online version of the book at https://eloquentjavascript.net.
There, you can click any code example to edit and run it and to see the output
it produces. To work on the exercises, go to https://eloquentjavascript.net/
code, which provides starting code for each coding exercise and allows you to
look at the solutions.

If you want to run the programs defined in this book outside of the book’s
website, some care will be required. Many examples stand on their own and
should work in any JavaScript environment. But code in later chapters is
often written for a specific environment (the browser or Node.js) and can run

https://eloquentjavascript.net/
https://eloquentjavascript.net/code
https://eloquentjavascript.net/code

only there. In addition, many chapters define bigger programs, and the pieces
of code that appear in them depend on each other or on external files. The
sandbox on the website provides links to Zip files containing all the scripts and
data files necessary to run the code for a given chapter.

OVERVIEW OF THIS BOOK

This book contains roughly three parts. The first 12 chapters discuss the
JavaScript language. The next seven chapters are about web browsers and the
way JavaScript is used to program them. Finally, two chapters are devoted to
Node.js, another environment to program JavaScript in.

Throughout the book, there are five project chapters, which describe larger
example programs to give you a taste of actual programming. In order of
appearance, we will work through building a delivery robot, a programming
language, a platform game, a pixel paint program, and a dynamic website.

The language part of the book starts with four chapters that introduce the
basic structure of the JavaScript language. They introduce control structures
(such as the while word you saw in this introduction), functions (writing your
own building blocks), and data structures. After these, you will be able to write
basic programs. Next, Chapters 5 and 6 introduce techniques to use functions
and objects to write more abstract code and keep complexity under control.

After a first project chapter, the language part of the book continues with
chapters on error handling and bug fixing, regular expressions (an important
tool for working with text), modularity (another defense against complexity),
and asynchronous programming (dealing with events that take time). The
second project chapter concludes the first part of the book.

The second part, Chapters 13 to 19, describes the tools that browser JavaScript
has access to. You'll learn to display things on the screen (Chapters 14 and
17), respond to user input (Chapter 15), and communicate over the network
(Chapter 18). There are again two project chapters in this part.

After that, Chapter 20 describes Node.js, and Chapter 21 builds a small
website using that tool.

TYPOGRAPHIC CONVENTIONS

In this book, text written in a monospaced font will represent elements of
programs—sometimes they are self-sufficient fragments, and sometimes they
just refer to part of a nearby program. Programs (of which you have already
seen a few) are written as follows:

https://eloquentjavascript.net/code

function factorial(n) {
if (n == 09)
return 1;
} else {
return factorial(n - 1) * n;

3
3

Sometimes, to show the output that a program produces, the expected out-
put is written after it, with two slashes and an arrow in front.

console.log(factorial(8));
// > 40320

Good luck!

“Below the surface of the machine, the program moves. Without
effort, it expands and contracts. In great harmony, electrons scatter
and regroup. The forms on the monitor are but ripples on the water.
The essence stays invisibly below.”

—Master Yuan-Ma, The Book of Programming

VALUES, TYPES, AND OPERATORS

Inside the computer’s world, there is only data. You can read data, modify
data, create new data—but that which isn’t data cannot be mentioned. All
this data is stored as long sequences of bits and is thus fundamentally alike.

Bits are any kind of two-valued things, usually described as zeros and ones.
Inside the computer, they take forms such as a high or low electrical charge,
a strong or weak signal, or a shiny or dull spot on the surface of a CD. Any
piece of discrete information can be reduced to a sequence of zeros and ones
and thus represented in bits.

For example, we can express the number 13 in bits. It works the same way
as a decimal number, but instead of 10 different digits, you have only 2, and
the weight of each increases by a factor of 2 from right to left. Here are the
bits that make up the number 13, with the weights of the digits shown below
them:

e o 0 0 1 1 0 1
128 64 32 16 8 4 2 1

So that’s the binary number 00001101. Its non-zero digits stand for 8, 4, and
1, and add up to 13.

VALUES

Imagine a sea of bits—an ocean of them. A typical modern computer has more
than 30 billion bits in its volatile data storage (working memory). Nonvolatile
storage (the hard disk or equivalent) tends to have yet a few orders of magnitude
more.

To be able to work with such quantities of bits without getting lost, we must
separate them into chunks that represent pieces of information. In a JavaScript
environment, those chunks are called values. Though all values are made of bits,
they play different roles. Every value has a type that determines its role. Some

10

values are numbers, some values are pieces of text, some values are functions,
and so on.

To create a value, you must merely invoke its name. This is convenient. You
don’t have to gather building material for your values or pay for them. You
just call for one, and whoosh, you have it. They are not really created from
thin air, of course. Every value has to be stored somewhere, and if you want to
use a gigantic amount of them at the same time, you might run out of memory.
Fortunately, this is a problem only if you need them all simultaneously. As
soon as you no longer use a value, it will dissipate, leaving behind its bits to
be recycled as building material for the next generation of values.

This chapter introduces the atomic elements of JavaScript programs, that is,
the simple value types and the operators that can act on such values.

NUMBERS

Values of the number type are, unsurprisingly, numeric values. In a JavaScript
program, they are written as follows:

13

Use that in a program, and it will cause the bit pattern for the number 13
to come into existence inside the computer’s memory.

JavaScript uses a fixed number of bits, 64 of them, to store a single number
value. There are only so many patterns you can make with 64 bits, which means
that the number of different numbers that can be represented is limited. With
N decimal digits, you can represent 10N numbers. Similarly, given 64 binary
digits, you can represent 264 different numbers, which is about 18 quintillion
(an 18 with 18 zeros after it). That’s a lot.

Computer memory used to be much smaller, and people tended to use groups
of 8 or 16 bits to represent their numbers. It was easy to accidentally overflow
such small numbers—to end up with a number that did not fit into the given
number of bits. Today, even computers that fit in your pocket have plenty of
memory, so you are free to use 64-bit chunks, and you need to worry about
overflow only when dealing with truly astronomical numbers.

Not all whole numbers less than 18 quintillion fit in a JavaScript number,
though. Those bits also store negative numbers, so one bit indicates the sign of
the number. A bigger issue is that nonwhole numbers must also be represented.
To do this, some of the bits are used to store the position of the decimal point.
The actual maximum whole number that can be stored is more in the range of

11

9 quadrillion (15 zeros)—which is still pleasantly huge.
Fractional numbers are written by using a dot.

9.81

For very big or very small numbers, you may also use scientific notation by
adding an e (for exponent), followed by the exponent of the number.

2.998e8

That is 2.998 x 10% = 299,800,000.

Calculations with whole numbers (also called integers) smaller than the
aforementioned 9 quadrillion are guaranteed to always be precise. Unfortu-
nately, calculations with fractional numbers are generally not. Just as = (pi)
cannot be precisely expressed by a finite number of decimal digits, many num-
bers lose some precision when only 64 bits are available to store them. This
is a shame, but it causes practical problems only in specific situations. The
important thing is to be aware of it and treat fractional digital numbers as
approximations, not as precise values.

ARITHMETIC

The main thing to do with numbers is arithmetic. Arithmetic operations such
as addition or multiplication take two number values and produce a new number
from them. Here is what they look like in JavaScript:

100 + 4 * 11

The + and * symbols are called operators. The first stands for addition, and
the second stands for multiplication. Putting an operator between two values
will apply it to those values and produce a new value.

But does the example mean “add 4 and 100, and multiply the result by 11,”
or is the multiplication done before the adding? As you might have guessed,
the multiplication happens first. But as in mathematics, you can change this
by wrapping the addition in parentheses.

(100 + 4) * 11

For subtraction, there is the - operator, and division can be done with the /
operator.

12

When operators appear together without parentheses, the order in which
they are applied is determined by the precedence of the operators. The example
shows that multiplication comes before addition. The / operator has the same
precedence as x. Likewise for + and -. When multiple operators with the same
precedence appear next to each other, asin 1 - 2 + 1, they are applied left to
right: (1 - 2)+ 1.

These rules of precedence are not something you should worry about. When
in doubt, just add parentheses.

There is one more arithmetic operator, which you might not immediately
recognize. The % symbol is used to represent the remainder operation. X % Y
is the remainder of dividing X by Y. For example, 314 % 100 produces 14, and
144 % 12 gives 0. The remainder operator’s precedence is the same as that of
multiplication and division. You’ll also often see this operator referred to as
modulo.

SPECIAL NUMBERS

There are three special values in JavaScript that are considered numbers but
don’t behave like normal numbers.

The first two are Infinity and -Infinity, which represent the positive and
negative infinities. Infinity - 1 is still Infinity, and so on. Don’t put too
much trust in infinity-based computation, though. It isn’t mathematically
sound, and it will quickly lead to the next special number: NaN.

NaN stands for “not a number”, even though it is a value of the number type.
You'll get this result when you, for example, try to calculate @ / @ (zero divided
by zero), Infinity - Infinity, or any number of other numeric operations that
don’t yield a meaningful result.

STRINGS

The next basic data type is the string. Strings are used to represent text. They
are written by enclosing their content in quotes.

‘Down on the sea!
"Lie on the ocean"
‘Float on the ocean'

You can use single quotes, double quotes, or backticks to mark strings, as
long as the quotes at the start and the end of the string match.

13

Almost anything can be put between quotes, and JavaScript will make a
string value out of it. But a few characters are more difficult. You can imagine
how putting quotes between quotes might be hard. Newlines (the characters
you get when you press ENTER) can be included without escaping only when
the string is quoted with backticks (\).

To make it possible to include such characters in a string, the following
notation is used: whenever a backslash (\) is found inside quoted text, it
indicates that the character after it has a special meaning. This is called
escaping the character. A quote that is preceded by a backslash will not end
the string but be part of it. When an n character occurs after a backslash, it is
interpreted as a newline. Similarly, a t after a backslash means a tab character.
Take the following string:

"This is the first line\nAnd this is the second"

The actual text contained is this:

This is the first line
And this is the second

There are, of course, situations where you want a backslash in a string to
be just a backslash, not a special code. If two backslashes follow each other,
they will collapse together, and only one will be left in the resulting string
value. This is how the string “A newline character is written like "\n".” can
be expressed:

"A newline character is written like \"\\n\"."

Strings, too, have to be modeled as a series of bits to be able to exist inside
the computer. The way JavaScript does this is based on the Unicode standard.
This standard assigns a number to virtually every character you would ever
need, including characters from Greek, Arabic, Japanese, Armenian, and so
on. If we have a number for every character, a string can be described by a
sequence of numbers.

And that’s what JavaScript does. But there’s a complication: JavaScript’s
representation uses 16 bits per string element, which can describe up to 219
different characters. But Unicode defines more characters than that—about
twice as many, at this point. So some characters, such as many emoji, take
up two “character positions” in JavaScript strings. We’ll come back to this in

14

Chapter 5.

Strings cannot be divided, multiplied, or subtracted, but the + operator can
be used on them. It does not add, but it concatenates—it glues two strings
together. The following line will produce the string "concatenate":

"COn" + Ilcatll + e + “nate"

String values have a number of associated functions (methods) that can be
used to perform other operations on them. I'll say more about these in Chapter
4.

Strings written with single or double quotes behave very much the same—
the only difference is in which type of quote you need to escape inside of them.
Backtick-quoted strings, usually called template literals, can do a few more
tricks. Apart from being able to span lines, they can also embed other values.

‘half of 100 is ${100 / 2}

When you write something inside ${} in a template literal, its result will be
computed, converted to a string, and included at that position. The example
produces “half of 100 is 50”.

UNARY OPERATORS

Not all operators are symbols. Some are written as words. One example is the
typeof operator, which produces a string value naming the type of the value
you give it.

console.log(typeof 4.5)
// = number
console.log(typeof "x")
// = string

We will use console.log in example code to indicate that we want to see the
result of evaluating something. More about that in the next chapter.

The other operators shown all operated on two values, but typeof takes only
one. Operators that use two values are called binary operators, while those that
take one are called unary operators. The minus operator can be used both as
a binary operator and as a unary operator.

console.log(- (10 - 2))

15

// > -8

BOOLEAN VALUES

It is often useful to have a value that distinguishes between only two possibili-
ties, like “yes” and “no” or “on” and “off”. For this purpose, JavaScript has a
Boolean type, which has just two values, true and false, which are written as
those words.

COMPARISON
Here is one way to produce Boolean values:

console.log(3 > 2)
// - true
console.log(3 < 2)
// - false

The > and < signs are the traditional symbols for “is greater than” and “is
less than”, respectively. They are binary operators. Applying them results in
a Boolean value that indicates whether they hold true in this case.

Strings can be compared in the same way.

console.log("Aardvark" < "Zoroaster")
// - true

The way strings are ordered is roughly alphabetic but not really what you’d
expect to see in a dictionary: uppercase letters are always “less” than lowercase
ones, so "Z" < "a", and nonalphabetic characters (!, -, and so on) are also
included in the ordering. When comparing strings, JavaScript goes over the
characters from left to right, comparing the Unicode codes one by one.

Other similar operators are >= (greater than or equal to), <= (less than or

equal to), == (equal to), and != (not equal to).

console.log("Itchy" != "Scratchy")
// = true

console.log("Apple" == "Orange")
// - false

16

There is only one value in JavaScript that is not equal to itself, and that is
NaN (“not a number”).

console.log(NaN == NaN)
// - false

NaN is supposed to denote the result of a nonsensical computation, and as
such, it isn’t equal to the result of any other nonsensical computations.

LOGICAL OPERATORS

There are also some operations that can be applied to Boolean values them-
selves. JavaScript supports three logical operators: and, or, and not. These
can be used to “reason” about Booleans.

The && operator represents logical and. It is a binary operator, and its result
is true only if both the values given to it are true.

console.log(true && false)
// - false
console.log(true && true)
// = true

The || operator denotes logical or. It produces true if either of the values
given to it is true.

console.log(false || true)
// = true
console.log(false || false)
// - false

Not is written as an exclamation mark (!). It is a unary operator that flips
the value given to it—!true produces false, and !false gives true.

When mixing these Boolean operators with arithmetic and other operators,
it is not always obvious when parentheses are needed. In practice, you can
usually get by with knowing that of the operators we have seen so far, || has
the lowest precedence, then comes &&, then the comparison operators (>, ==,
and so on), and then the rest. This order has been chosen such that, in typical
expressions like the following one, as few parentheses as possible are necessary:

1T+ 1==228&& 10 * 10 > 50

17

The last logical operator I will discuss is not unary, not binary, but ternary,
operating on three values. It is written with a question mark and a colon, like
this:

console.log(true ? 1 : 2);
// =1
console.log(false ? 1 : 2);
// = 2

This one is called the conditional operator (or sometimes just the ternary
operator since it is the only such operator in the language). The value on the
left of the question mark “picks” which of the other two values will come out.
When it is true, it chooses the middle value, and when it is false, it chooses the
value on the right.

EMPTY VALUES

There are two special values, written null and undefined, that are used to
denote the absence of a meaningful value. They are themselves values, but
they carry no information.

Many operations in the language that don’t produce a meaningful value
(you’ll see some later) yield undefined simply because they have to yield some
value.

The difference in meaning between undefined and null is an accident of
JavaScript’s design, and it doesn’t matter most of the time. In cases where
you actually have to concern yourself with these values, I recommend treating
them as mostly interchangeable.

AUTOMATIC TYPE CONVERSION

In the Introduction, I mentioned that JavaScript goes out of its way to accept
almost any program you give it, even programs that do odd things. This is
nicely demonstrated by the following expressions:

console.log(8 * null)

// - 0@
console.log("5" - 1)
// = 4
console.log("5" + 1)
// - 51

console.log("five" * 2)

18

// - NaN
console.log(false == 0)
// = true

When an operator is applied to the “wrong” type of value, JavaScript will
quietly convert that value to the type it needs, using a set of rules that often
aren’t what you want or expect. This is called type coercion. The null in the
first expression becomes @, and the "5" in the second expression becomes 5
(from string to number). Yet in the third expression, + tries string concate-
nation before numeric addition, so the 1 is converted to "1" (from number to
string).

When something that doesn’t map to a number in an obvious way (such as
"five" or undefined) is converted to a number, you get the value NaN. Further
arithmetic operations on NaN keep producing NaN, so if you find yourself getting
one of those in an unexpected place, look for accidental type conversions.

When comparing values of the same type using ==, the outcome is easy to
predict: you should get true when both values are the same, except in the case
of NaN. But when the types differ, JavaScript uses a complicated and confusing
set of rules to determine what to do. In most cases, it just tries to convert
one of the values to the other value’s type. However, when null or undefined
occurs on either side of the operator, it produces true only if both sides are one
of null or undefined.

console.log(null == undefined);
// = true

console.log(null == @);

// - false

That behavior is often useful. When you want to test whether a value has a
real value instead of null or undefined, you can compare it to null with the
== (or !=) operator.

But what if you want to test whether something refers to the precise value

false? Expressions like 0 == false and "" == false are also true because
of automatic type conversion. When you do not want any type conversions
to happen, there are two additional operators: === and !==. The first tests

whether a value is precisely equal to the other, and the second tests whether it
is not precisely equal. So "" === false is false as expected.

I recommend using the three-character comparison operators defensively to
prevent unexpected type conversions from tripping you up. But when you're
certain the types on both sides will be the same, there is no problem with using

19

the shorter operators.

SHORT-CIRCUITING OF LOGICAL OPERATORS

The logical operators & and || handle values of different types in a peculiar
way. They will convert the value on their left side to Boolean type in order
to decide what to do, but depending on the operator and the result of that
conversion, they will return either the original left-hand value or the right-
hand value.

The || operator, for example, will return the value to its left when that can
be converted to true and will return the value on its right otherwise. This has
the expected effect when the values are Boolean and does something analogous
for values of other types.

console.log(null || "user")

// - user

console.log("Agnes" || "user")
// - Agnes

We can use this functionality as a way to fall back on a default value. If you
have a value that might be empty, you can put || after it with a replacement
value. If the initial value can be converted to false, you'll get the replacement
instead. The rules for converting strings and numbers to Boolean values state
that @, NaN, and the empty string ("") count as false, while all the other values
count as true. So @ || -1 produces -1, and "" || "!?" yields "!?".

The && operator works similarly but the other way around. When the value
to its left is something that converts to false, it returns that value, and otherwise
it returns the value on its right.

Another important property of these two operators is that the part to their
right is evaluated only when necessary. In the case of true || X, no matter
what X is—even if it’s a piece of program that does something terrible—the
result will be true, and X is never evaluated. The same goes for false && X,
which is false and will ignore X. This is called short-circuit evaluation.

The conditional operator works in a similar way. Of the second and third
values, only the one that is selected is evaluated.

SUMMARY

We looked at four types of JavaScript values in this chapter: numbers, strings,
Booleans, and undefined values.

20

Such values are created by typing in their name (true, null) or value (13
, "abc"). You can combine and transform values with operators. We saw
binary operators for arithmetic (+, -, *, /, and %), string concatenation (+),
comparison (==, =, === l== < > <= >=) and logic (88, ||), as well as several
unary operators (- to negate a number, ! to negate logically, and typeof to
find a value’s type) and a ternary operator (?:) to pick one of two values based
on a third value.

This gives you enough information to use JavaScript as a pocket calculator
but not much more. The next chapter will start tying these expressions together
into basic programs.

21

“And my heart glows bright red under my filmy, translucent skin and
they have to administer 10cc of JavaScript to get me to come back.

(I respond well to toxins in the blood.) Man, that stuff will kick the

peaches right out your gills!”

—_why, Why’s (Poignant) Guide to Ruby

PROGRAM STRUCTURE

In this chapter, we will start to do things that can actually be called program-
ming. We will expand our command of the JavaScript language beyond the
nouns and sentence fragments we’ve seen so far, to the point where we can
express meaningful prose.

EXPRESSIONS AND STATEMENTS

In Chapter 1, we made values and applied operators to them to get new values.
Creating values like this is the main substance of any JavaScript program. But
that substance has to be framed in a larger structure to be useful. So that’s
what we’ll cover next.

A fragment of code that produces a value is called an ezpression. Every value
that is written literally (such as 22 or "psychoanalysis") is an expression. An
expression between parentheses is also an expression, as is a binary operator
applied to two expressions or a unary operator applied to one.

This shows part of the beauty of a language-based interface. Expressions
can contain other expressions in a way similar to how subsentences in human
languages are nested—a subsentence can contain its own subsentences, and
so on. This allows us to build expressions that describe arbitrarily complex
computations.

If an expression corresponds to a sentence fragment, a JavaScript statement
corresponds to a full sentence. A program is a list of statements.

The simplest kind of statement is an expression with a semicolon after it.
This is a program:

1;
Ifalse;

It is a useless program, though. An expression can be content to just produce
a value, which can then be used by the enclosing code. A statement stands on

22

its own, so it amounts to something only if it affects the world. It could display
something on the screen—that counts as changing the world—or it could change
the internal state of the machine in a way that will affect the statements that
come after it. These changes are called side effects. The statements in the
previous example just produce the values 1 and true and then immediately
throw them away. This leaves no impression on the world at all. When you
run this program, nothing observable happens.

In some cases, JavaScript allows you to omit the semicolon at the end of a
statement. In other cases, it has to be there, or the next line will be treated
as part of the same statement. The rules for when it can be safely omitted
are somewhat complex and error-prone. So in this book, every statement that
needs a semicolon will always get one. I recommend you do the same, at least
until you've learned more about the subtleties of missing semicolons.

BINDINGS

How does a program keep an internal state? How does it remember things?
We have seen how to produce new values from old values, but this does not
change the old values, and the new value has to be immediately used or it will
dissipate again. To catch and hold values, JavaScript provides a thing called a
binding, or variable:

let caught = 5 % 5;

That’s a second kind of statement. The special word (keyword) let indicates
that this sentence is going to define a binding. It is followed by the name of
the binding and, if we want to immediately give it a value, by an = operator
and an expression.

The previous statement creates a binding called caught and uses it to grab
hold of the number that is produced by multiplying 5 by 5.

After a binding has been defined, its name can be used as an expression. The
value of such an expression is the value the binding currently holds. Here’s an
example:

let ten = 10;
console.log(ten * ten);
// = 100

When a binding points at a value, that does not mean it is tied to that

23

value forever. The = operator can be used at any time on existing bindings to
disconnect them from their current value and have them point to a new one.

let mood = "light";
console.log(mood);
// - light

mood = "dark";
console.log(mood);
// - dark

You should imagine bindings as tentacles, rather than boxes. They do not
contain values; they grasp them—two bindings can refer to the same value.
A program can access only the values that it still has a reference to. When
you need to remember something, you grow a tentacle to hold on to it or you
reattach one of your existing tentacles to it.

Let’s look at another example. To remember the number of dollars that
Luigi still owes you, you create a binding. And then when he pays back $35,
you give this binding a new value.

let luigisDebt = 140;
luigisDebt = luigisDebt - 35;
console.log(luigisDebt);

// > 105

When you define a binding without giving it a value, the tentacle has nothing
to grasp, so it ends in thin air. If you ask for the value of an empty binding,
you’ll get the value undefined.

A single let statement may define multiple bindings. The definitions must
be separated by commas.

let one = 1, two = 2;
console.log(one + two);
// - 3

The words var and const can also be used to create bindings, in a way similar
to let.

var name = "Ayda";

const greeting = "Hello "“;
console.log(greeting + name);
// - Hello Ayda

24

The first, var (short for “variable”), is the way bindings were declared in
pre-2015 JavaScript. I'll get back to the precise way it differs from let in the
next chapter. For now, remember that it mostly does the same thing, but we’ll
rarely use it in this book because it has some confusing properties.

The word const stands for constant. It defines a constant binding, which
points at the same value for as long as it lives. This is useful for bindings that
give a name to a value so that you can easily refer to it later.

BINDING NAMES

Binding names can be any word. Digits can be part of binding names—catch22

is a valid name, for example—but the name must not start with a digit. A
binding name may include dollar signs ($) or underscores (_) but no other
punctuation or special characters.

Words with a special meaning, such as let, are keywords, and they may not
be used as binding names. There are also a number of words that are “reserved
for use” in future versions of JavaScript, which also can’t be used as binding
names. The full list of keywords and reserved words is rather long.

break case catch class const continue debugger default
delete do else enum export extends false finally for
function if implements import interface in instanceof let
new package private protected public return static super
switch this throw true try typeof var void while with yield

Don’t worry about memorizing this list. When creating a binding produces
an unexpected syntax error, see whether you're trying to define a reserved word.

THE ENVIRONMENT

The collection of bindings and their values that exist at a given time is called
the environment. When a program starts up, this environment is not empty. It
always contains bindings that are part of the language standard, and most of the
time, it also has bindings that provide ways to interact with the surrounding
system. For example, in a browser, there are functions to interact with the
currently loaded website and to read mouse and keyboard input.

25

FUNCTIONS

A lot of the values provided in the default environment have the type function.
A function is a piece of program wrapped in a value. Such values can be applied
in order to run the wrapped program. For example, in a browser environment,
the binding prompt holds a function that shows a little dialog box asking for
user input. It is used like this:

prompt("Enter passcode");

eloquentjavascript.net says:

Enter passcode

Cancel oK

Executing a function is called invoking, calling, or applying it. You can
call a function by putting parentheses after an expression that produces a
function value. Usually you’ll directly use the name of the binding that holds
the function. The values between the parentheses are given to the program
inside the function. In the example, the prompt function uses the string that
we give it as the text to show in the dialog box. Values given to functions are
called arguments. Different functions might need a different number or different
types of arguments.

The prompt function isn’t used much in modern web programming, mostly
because you have no control over the way the resulting dialog looks, but can
be helpful in toy programs and experiments.

THE CONSOLE.LOG FUNCTION

In the examples, I used console.log to output values. Most JavaScript sys-
tems (including all modern web browsers and Node.js) provide a console.log
function that writes out its arguments to some text output device. In browsers,
the output lands in the JavaScript console. This part of the browser interface
is hidden by default, but most browsers open it when you press F12 or, on a
Mac, COMMAND-OPTION-I. If that does not work, search through the menus
for an item named Developer Tools or similar.

Though binding names cannot contain period characters, console.log does
have one. This is because console.log isn’t a simple binding. It is actually an

26

expression that retrieves the log property from the value held by the console
binding. We’'ll find out exactly what this means in Chapter 4.

RETURN VALUES

Showing a dialog box or writing text to the screen is a side effect. A lot of
functions are useful because of the side effects they produce. Functions may
also produce values, in which case they don’t need to have a side effect to
be useful. For example, the function Math.max takes any amount of number
arguments and gives back the greatest.

console.log(Math.max(2, 4));
// = 4

When a function produces a value, it is said to return that value. Anything
that produces a value is an expression in JavaScript, which means function
calls can be used within larger expressions. Here a call to Math.min, which is
the opposite of Math.max, is used as part of a plus expression:

console.log(Math.min(2, 4) + 100);
// > 102

The next chapter explains how to write your own functions.

CONTROL FLOW

When your program contains more than one statement, the statements are
executed as if they are a story, from top to bottom. This example program
has two statements. The first one asks the user for a number, and the second,
which is executed after the first, shows the square of that number.

let theNumber = Number(prompt("Pick a number"));
console.log("Your number is the square root of " +
theNumber * theNumber);

The function Number converts a value to a number. We need that conversion
because the result of prompt is a string value, and we want a number. There
are similar functions called String and Boolean that convert values to those

types.

27

Here is the rather trivial schematic representation of straight-line control
flow:

——

CONDITIONAL EXECUTION

Not all programs are straight roads. We may, for example, want to create
a branching road, where the program takes the proper branch based on the
situation at hand. This is called conditional execution.

-

Conditional execution is created with the if keyword in JavaScript. In the
simple case, we want some code to be executed if, and only if, a certain condition
holds. We might, for example, want to show the square of the input only if the
input is actually a number.

let theNumber = Number (prompt("Pick a number"));
if (!Number.isNaN(theNumber)) {
console.log("Your number is the square root of " +
theNumber * theNumber);

With this modification, if you enter “parrot”, no output is shown.

The if keyword executes or skips a statement depending on the value of
a Boolean expression. The deciding expression is written after the keyword,
between parentheses, followed by the statement to execute.

The Number.isNaN function is a standard JavaScript function that returns
true only if the argument it is given is NaN. The Number function happens to
return NaN when you give it a string that doesn’t represent a valid number.
Thus, the condition translates to “unless theNumber is not-a-number, do this”.

The statement after the if is wrapped in braces ({ and }) in this example.
The braces can be used to group any number of statements into a single state-
ment, called a block. You could also have omitted them in this case, since they
hold only a single statement, but to avoid having to think about whether they
are needed, most JavaScript programmers use them in every wrapped state-
ment like this. We’ll mostly follow that convention in this book, except for the
occasional one-liner.

28

if (1 + 1 == 2) console.log("It's true");
// - It's true

You often won'’t just have code that executes when a condition holds true,
but also code that handles the other case. This alternate path is represented
by the second arrow in the diagram. You can use the else keyword, together
with if, to create two separate, alternative execution paths.

let theNumber = Number (prompt("Pick a number"));
if (!Number.isNaN(theNumber)) {
console.log("Your number is the square root of " +
theNumber * theNumber);
} else {
console.log("Hey. Why didn't you give me a number?");

b

If you have more than two paths to choose from, you can “chain” multiple
if/else pairs together. Here’s an example:

let num = Number (prompt("Pick a number"));

if (num < 10) {
console.log("Small");

} else if (num < 100) {
console.log("Medium");

} else {
console.log("Large");

3

The program will first check whether num is less than 10. If it is, it chooses
that branch, shows "Small", and is done. If it isn’t, it takes the else branch,
which itself contains a second if. If the second condition (< 100) holds, that
means the number is between 10 and 100, and "Medium" is shown. If it doesn’t,
the second and last else branch is chosen.

The schema for this program looks something like this:

A7

29

WHILE AND DO LOOPS

Consider a program that outputs all even numbers from 0 to 12. One way to
write this is as follows:

console.log(9);
console.log(2);
console.log(4);
console.log(6);
console.log(8);
console.log(10);
console.log(12);

That works, but the idea of writing a program is to make something less
work, not more. If we needed all even numbers less than 1,000, this approach
would be unworkable. What we need is a way to run a piece of code multiple
times. This form of control flow is called a loop.

——- O S—-

O

Looping control flow allows us to go back to some point in the program where
we were before and repeat it with our current program state. If we combine
this with a binding that counts, we can do something like this:

let number = 0;

while (number <= 12) {
console.log(number);
number = number + 2;

3

// > 0

// = 2

// .. etcetera

A statement starting with the keyword while creates a loop. The word while
is followed by an expression in parentheses and then a statement, much like if.
The loop keeps entering that statement as long as the expression produces a
value that gives true when converted to Boolean.

The number binding demonstrates the way a binding can track the progress
of a program. Every time the loop repeats, number gets a value that is 2 more
than its previous value. At the beginning of every repetition, it is compared

30

with the number 12 to decide whether the program’s work is finished.

As an example that actually does something useful, we can now write a
program that calculates and shows the value of 219 (2 to the 10th power). We
use two bindings: one to keep track of our result and one to count how often
we have multiplied this result by 2. The loop tests whether the second binding
has reached 10 yet and, if not, updates both bindings.

let result = 1;

let counter = 0;

while (counter < 10) {
result = result * 2;
counter = counter + 1;

}

console.log(result);
// - 1024

The counter could also have started at 1 and checked for <= 10, but for
reasons that will become apparent in Chapter 4, it is a good idea to get used
to counting from 0.

A do loop is a control structure similar to a while loop. It differs only on one
point: a do loop always executes its body at least once, and it starts testing
whether it should stop only after that first execution. To reflect this, the test
appears after the body of the loop.

let yourName;
do {

yourName = prompt("Who are you?");
} while (!yourName);
console.log(yourName);

This program will force you to enter a name. It will ask again and again until
it gets something that is not an empty string. Applying the ! operator will
convert a value to Boolean type before negating it, and all strings except ""
convert to true. This means the loop continues going round until you provide
a non-empty name.

INDENTING CODE

In the examples, I've been adding spaces in front of statements that are part
of some larger statement. These spaces are not required—the computer will
accept the program just fine without them. In fact, even the line breaks in

31

programs are optional. You could write a program as a single long line if you
felt like it.

The role of this indentation inside blocks is to make the structure of the
code stand out. In code where new blocks are opened inside other blocks,
it can become hard to see where one block ends and another begins. With
proper indentation, the visual shape of a program corresponds to the shape of
the blocks inside it. I like to use two spaces for every open block, but tastes
differ—some people use four spaces, and some people use tab characters. The
important thing is that each new block adds the same amount of space.

if (false != true) {
console.log("That makes sense.");
if (1 <2) ¢
console.log("No surprise there.");

b
b

Most code editor programs will help by automatically indenting new lines
the proper amount.

FOR LOOPS

Many loops follow the pattern shown in the while examples. First a “counter”
binding is created to track the progress of the loop. Then comes a while loop,
usually with a test expression that checks whether the counter has reached
its end value. At the end of the loop body, the counter is updated to track
progress.

Because this pattern is so common, JavaScript and similar languages provide
a slightly shorter and more comprehensive form, the for loop.

for (let number = @; number <= 12; number = number + 2) {
console.log(number);

3

// > 0
// = 2

/] .. etcetera

This program is exactly equivalent to the earlier even-number-printing exam-
ple. The only change is that all the statements that are related to the “state”
of the loop are grouped together after for.

32

The parentheses after a for keyword must contain two semicolons. The part
before the first semicolon initializes the loop, usually by defining a binding.
The second part is the expression that checks whether the loop must continue.
The final part updates the state of the loop after every iteration. In most cases,
this is shorter and clearer than a while construct.

This is the code that computes 2'0 using for instead of while:

let result = 1;
for (let counter = 0; counter < 10; counter = counter + 1) {
result = result * 2;

}

console.log(result);
// - 1024

BREAKING OUT OF A LOOP

Having the looping condition produce false is not the only way a loop can fin-
ish. There is a special statement called break that has the effect of immediately
jumping out of the enclosing loop.

This program illustrates the break statement. It finds the first number that
is both greater than or equal to 20 and divisible by 7.

for (let current = 20; ; current = current + 1) {
if (current % 7 == 0) {
console.log(current);
break;

3

b
/] - 21

Using the remainder (%) operator is an easy way to test whether a number
is divisible by another number. If it is, the remainder of their division is zero.

The for construct in the example does not have a part that checks for the
end of the loop. This means that the loop will never stop unless the break
statement inside is executed.

If you were to remove that break statement or you accidentally write an
end condition that always produces true, your program would get stuck in an
infinite loop. A program stuck in an infinite loop will never finish running,
which is usually a bad thing.

33

The continue keyword is similar to break, in that it influences the progress
of a loop. When continue is encountered in a loop body, control jumps out of
the body and continues with the loop’s next iteration.

UPDATING BINDINGS SUCCINCTLY

Especially when looping, a program often needs to “update” a binding to hold
a value based on that binding’s previous value.

counter = counter + 1;

JavaScript provides a shortcut for this.

counter += 1;

Similar shortcuts work for many other operators, such as result *= 2 to
double result or counter -= 1 to count downward.
This allows us to shorten our counting example a little more.

for (let number = @; number <= 12; number += 2) {
console.log(number);

b

For counter += 1 and counter -= 1, there are even shorter equivalents:
counter++ and counter--.

DISPATCHING ON A VALUE WITH SWITCH

It is not uncommon for code to look like this:

if (x == "valuel") action1();
else if (x == "value2") action2();
else if (x == "value3") action3();

else defaultAction();

There is a construct called switch that is intended to express such a “dis-
patch” in a more direct way. Unfortunately, the syntax JavaScript uses for
this (which it inherited from the C/Java line of programming languages) is
somewhat awkward—a chain of if statements may look better. Here is an
example:

34

switch (prompt("What is the weather like?")) {
case "rainy":
console.log("Remember to bring an umbrella.");
break;
case "sunny":
console.log("Dress lightly.");
case "cloudy":
console.log("Go outside.");
break;
default:
console.log("Unknown weather type!");
break;

You may put any number of case labels inside the block opened by switch.
The program will start executing at the label that corresponds to the value
that switch was given, or at default if no matching value is found. It will
continue executing, even across other labels, until it reaches a break statement.
In some cases, such as the "sunny" case in the example, this can be used to
share some code between cases (it recommends going outside for both sunny
and cloudy weather). But be careful—it is easy to forget such a break, which
will cause the program to execute code you do not want executed.

CAPITALIZATION

Binding names may not contain spaces, yet it is often helpful to use multiple
words to clearly describe what the binding represents. These are pretty much
your choices for writing a binding name with several words in it:

fuzzylittleturtle
fuzzy_little_turtle
FuzzyLittleTurtle
fuzzylLittleTurtle

The first style can be hard to read. I rather like the look of the underscores,
though that style is a little painful to type. The standard JavaScript functions,
and most JavaScript programmers, follow the bottom style—they capitalize
every word except the first. It is not hard to get used to little things like that,
and code with mixed naming styles can be jarring to read, so we follow this
convention.

In a few cases, such as the Number function, the first letter of a binding is

35

also capitalized. This was done to mark this function as a constructor. What
a constructor is will become clear in Chapter 6. For now, the important thing
is not to be bothered by this apparent lack of consistency.

COMMENTS

Often, raw code does not convey all the information you want a program to
convey to human readers, or it conveys it in such a cryptic way that people
might not understand it. At other times, you might just want to include some
related thoughts as part of your program. This is what comments are for.

A comment is a piece of text that is part of a program but is completely
ignored by the computer. JavaScript has two ways of writing comments. To
write a single-line comment, you can use two slash characters (//) and then
the comment text after it.

let accountBalance = calculateBalance(account);

// It's a green hollow where a river sings
accountBalance.adjust();

// Madly catching white tatters in the grass.

let report = new Report();

// Where the sun on the proud mountain rings:
addToReport(accountBalance, report);

// It's a little valley, foaming like light in a glass.

A // comment goes only to the end of the line. A section of text between
/% and %/ will be ignored in its entirety, regardless of whether it contains line
breaks. This is useful for adding blocks of information about a file or a chunk
of program.

/*
I first found this number scrawled on the back of an old notebook.
Since then, it has often dropped by, showing up in phone numbers
and the serial numbers of products that I've bought. It obviously
likes me, so I've decided to keep it.

*/

const myNumber = 11213;

36

SUMMARY

You now know that a program is built out of statements, which themselves
sometimes contain more statements. Statements tend to contain expressions,
which themselves can be built out of smaller expressions.

Putting statements after one another gives you a program that is executed
from top to bottom. You can introduce disturbances in the flow of control
by using conditional (if, else, and switch) and looping (while, do, and for)
statements.

Bindings can be used to file pieces of data under a name, and they are useful
for tracking state in your program. The environment is the set of bindings
that are defined. JavaScript systems always put a number of useful standard
bindings into your environment.

Functions are special values that encapsulate a piece of program. You can
invoke them by writing functionName (argument1, argument2). Such a function
call is an expression and may produce a value.

EXERCISES

If you are unsure how to test your solutions to the exercises, refer to the Intro-
duction.

Each exercise starts with a problem description. Read this description and
try to solve the exercise. If you run into problems, consider reading the hints
at the end of the book. Full solutions to the exercises are not included in this
book, but you can find them online at https://eloquentjavascript.net/code. 1f
you want to learn something from the exercises, I recommend looking at the
solutions only after you've solved the exercise, or at least after you've attacked
it long and hard enough to have a slight headache.

LOOPING A TRIANGLE

Write a loop that makes seven calls to console.log to output the following
triangle:

#

#it

#Hit#
HHH#H#
HHH#HH#
HHHHHH
HH A #

37

https://eloquentjavascript.net/code#2

It may be useful to know that you can find the length of a string by writing
.length after it.

let abc = "abc";
console.log(abc.length);
// =3

F1zzBuzz

Write a program that uses console.log to print all the numbers from 1 to 100,
with two exceptions. For numbers divisible by 3, print "Fizz" instead of the
number, and for numbers divisible by 5 (and not 3), print "Buzz" instead.

When you have that working, modify your program to print "FizzBuzz" for
numbers that are divisible by both 3 and 5 (and still print "Fizz" or "Buzz"
for numbers divisible by only one of those).

(This is actually an interview question that has been claimed to weed out
a significant percentage of programmer candidates. So if you solved it, your
labor market value just went up.)

CHESSBOARD

Write a program that creates a string that represents an 8 x8 grid, using newline
characters to separate lines. At each position of the grid there is either a space
or a "#" character. The characters should form a chessboard.

Passing this string to console.log should show something like this:

#H#HH#
HHH
#H#HH#
#H#HH#
#H#HH#
#H#HH
#H#HH
#H#H##

When you have a program that generates this pattern, define a binding size
= 8 and change the program so that it works for any size, outputting a grid
of the given width and height.

38

“People think that computer science is the art of geniuses but the
actual reality is the opposite, just many people doing things that
build on each other, like a wall of mini stones.”

—Donald Knuth

FUNCTIONS

Functions are the bread and butter of JavaScript programming. The concept
of wrapping a piece of program in a value has many uses. It gives us a way
to structure larger programs, to reduce repetition, to associate names with
subprograms, and to isolate these subprograms from each other.

The most obvious application of functions is defining new vocabulary. Cre-
ating new words in prose is usually bad style. But in programming, it is
indispensable.

Typical adult English speakers have some 20,000 words in their vocabulary.
Few programming languages come with 20,000 commands built in. And the
vocabulary that is available tends to be more precisely defined, and thus less
flexible, than in human language. Therefore, we usually have to introduce new
concepts to avoid repeating ourselves too much.

DEFINING A FUNCTION

A function definition is a regular binding where the value of the binding is
a function. For example, this code defines square to refer to a function that
produces the square of a given number:

const square = function(x) {
return x * Xx;

1}

console.log(square(12));
// = 144

A function is created with an expression that starts with the keyword function
. Functions have a set of parameters (in this case, only x) and a body, which
contains the statements that are to be executed when the function is called.
The function body of a function created this way must always be wrapped in
braces, even when it consists of only a single statement.

39

A function can have multiple parameters or no parameters at all. In the
following example, makeNoise does not list any parameter names, whereas power
lists two:

const makeNoise = function() {
console.log("Pling!");

1

makeNoise();
// - Pling!

const power = function(base, exponent) {
let result = 1;
for (let count = @; count < exponent; count++) {
result *= base;

}

return result;

1

console.log(power(2, 10));
// = 1024

Some functions produce a value, such as power and square, and some don’t,
such as makeNoise, whose only result is a side effect. A return statement
determines the value the function returns. When control comes across such
a statement, it immediately jumps out of the current function and gives the
returned value to the code that called the function. A return keyword without
an expression after it will cause the function to return undefined. Functions
that don’t have a return statement at all, such as makeNoise, similarly return
undefined.

Parameters to a function behave like regular bindings, but their initial values
are given by the caller of the function, not the code in the function itself.

BINDINGS AND SCOPES

Each binding has a scope, which is the part of the program in which the binding
is visible. For bindings defined outside of any function or block, the scope is
the whole program—you can refer to such bindings wherever you want. These
are called global.

But bindings created for function parameters or declared inside a function
can be referenced only in that function, so they are known as local bindings.

40

Every time the function is called, new instances of these bindings are created.
This provides some isolation between functions—each function call acts in its
own little world (its local environment) and can often be understood without
knowing a lot about what’s going on in the global environment.

Bindings declared with let and const are in fact local to the block that they
are declared in, so if you create one of those inside of a loop, the code before and
after the loop cannot “see” it. In pre-2015 JavaScript, only functions created
new scopes, so old-style bindings, created with the var keyword, are visible
throughout the whole function that they appear in—or throughout the global
scope, if they are not in a function.

let x = 10;

if (true) {
let y = 20;
var z = 30;
console.log(x + y + z);
// - 60

}

// y is not visible here

console.log(x + z);

// - 40

Each scope can “look out” into the scope around it, so x is visible inside the
block in the example. The exception is when multiple bindings have the same
name—in that case, code can see only the innermost one. For example, when
the code inside the halve function refers to n, it is seeing its own n, not the
global n.

const halve = function(n) {
return n / 2;

};

let n = 10;
console.log(halve(100));
// - 50

console.log(n);

// - 10

41

NESTED SCOPE

JavaScript distinguishes not just global and local bindings. Blocks and functions
can be created inside other blocks and functions, producing multiple degrees
of locality.

For example, this function—which outputs the ingredients needed to make
a batch of hummus—has another function inside it:

const hummus = function(factor) {
const ingredient = function(amount, unit, name) {
let ingredientAmount = amount * factor;
if (ingredientAmount > 1) {

unit += "s";

}

console.log('${ingredientAmount} ${unit} ${namel}‘);
s
ingredient(1, "can", "chickpeas");
ingredient(0.25, "cup", "tahini");
ingredient(0.25, "cup", "lemon juice");
ingredient(1, "clove", "garlic");
ingredient(2, "tablespoon", "olive o0il");
ingredient (0.5, "teaspoon", "cumin");

1

The code inside the ingredient function can see the factor binding from
the outer function. But its local bindings, such as unit or ingredientAmount,
are not visible in the outer function.

The set of bindings visible inside a block is determined by the place of that
block in the program text. Each local scope can also see all the local scopes that
contain it, and all scopes can see the global scope. This approach to binding
visibility is called lezical scoping.

FUNCTIONS AS VALUES

A function binding usually simply acts as a name for a specific piece of the
program. Such a binding is defined once and never changed. This makes it
easy to confuse the function and its name.

But the two are different. A function value can do all the things that other
values can do—you can use it in arbitrary expressions, not just call it. It is
possible to store a function value in a new binding, pass it as an argument to
a function, and so on. Similarly, a binding that holds a function is still just a
regular binding and can, if not constant, be assigned a new value, like so:

42

let launchMissiles = function() {
missileSystem.launch("now");

s

if (safeMode) {
launchMissiles = function() {/* do nothing */3};

}

In Chapter 5, we will discuss the interesting things that can be done by

passing around function values to other functions.

DECLARATION NOTATION

There is a slightly shorter way to create a function binding. When the function
keyword is used at the start of a statement, it works differently.

function square(x) {
return x * Xx;

}

This is a function declaration. The statement defines the binding square and
points it at the given function. It is slightly easier to write and doesn’t require
a semicolon after the function.

There is one subtlety with this form of function definition.

console.log("The future says:", future());

function future() {
return "You'll never have flying cars";

}

The preceding code works, even though the function is defined below the code
that uses it. Function declarations are not part of the regular top-to-bottom
flow of control. They are conceptually moved to the top of their scope and can
be used by all the code in that scope. This is sometimes useful because it offers
the freedom to order code in a way that seems meaningful, without worrying
about having to define all functions before they are used.

43

ARROW FUNCTIONS

There’s a third notation for functions, which looks very different from the
others. Instead of the function keyword, it uses an arrow (=>) made up of an
equal sign and a greater-than character (not to be confused with the greater-
than-or-equal operator, which is written >=).

const power = (base, exponent) => {
let result = 1;
for (let count = @; count < exponent; count++) {
result *= base;

3

return result;

};

The arrow comes after the list of parameters and is followed by the function’s
body. It expresses something like “this input (the parameters) produces this
result (the body)”.

When there is only one parameter name, you can omit the parentheses
around the parameter list. If the body is a single expression, rather than a
block in braces, that expression will be returned from the function. So, these
two definitions of square do the same thing:

const squarel = (x) => { return x * x; };
const square2 = x => X * X;

When an arrow function has no parameters at all, its parameter list is just
an empty set of parentheses.

const horn = () => {
console.log("Toot");

};

There’s no deep reason to have both arrow functions and function expres-
sions in the language. Apart from a minor detail, which we’ll discuss in Chapter
6, they do the same thing. Arrow functions were added in 2015, mostly to make
it possible to write small function expressions in a less verbose way. We’ll be
using them a lot in Chapter 5.

44

THE CALL STACK

The way control flows through functions is somewhat involved. Let’s take a
closer look at it. Here is a simple program that makes a few function calls:

function greet(who) {
console.log("Hello " + who);

}
greet("Harry");

console.log("Bye");

A run through this program goes roughly like this: the call to greet causes
control to jump to the start of that function (line 2). The function calls console
.log, which takes control, does its job, and then returns control to line 2. There
it reaches the end of the greet function, so it returns to the place that called it,
which is line 4. The line after that calls console.log again. After that returns,
the program reaches its end.

We could show the flow of control schematically like this:

not in function
in greet
in console.log
in greet
not in function
in console.log
not in function

Because a function has to jump back to the place that called it when it re-
turns, the computer must remember the context from which the call happened.
In one case, console.log has to return to the greet function when it is done.
In the other case, it returns to the end of the program.

The place where the computer stores this context is the call stack. Every
time a function is called, the current context is stored on top of this stack.
When a function returns, it removes the top context from the stack and uses
that context to continue execution.

Storing this stack requires space in the computer’s memory. When the stack
grows too big, the computer will fail with a message like “out of stack space”
or “too much recursion”. The following code illustrates this by asking the
computer a really hard question that causes an infinite back-and-forth between
two functions. Rather, it would be infinite, if the computer had an infinite
stack. As it is, we will run out of space, or “blow the stack”.

45

function chicken() {
return egg();

3

function egg() {
return chicken();

}
console.log(chicken() + " came first.");
/> N7

OPTIONAL ARGUMENTS

The following code is allowed and executes without any problem:

function square(x) { return x * x; }
console.log(square(4, true, "hedgehog"));
// - 16

We defined square with only one parameter. Yet when we call it with three,
the language doesn’t complain. It ignores the extra arguments and computes
the square of the first one.

JavaScript is extremely broad-minded about the number of arguments you
pass to a function. If you pass too many, the extra ones are ignored. If you
pass too few, the missing parameters get assigned the value undefined.

The downside of this is that it is possible—likely, even—that you’ll acciden-
tally pass the wrong number of arguments to functions. And no one will tell
you about it.

The upside is that this behavior can be used to allow a function to be called
with different numbers of arguments. For example, this minus function tries to
imitate the - operator by acting on either one or two arguments:

function minus(a, b) {
if (b === undefined) return -a;
else return a - b;

3

console.log(minus(10));

// > -10
console.log(minus(10, 5));
// =>5

46

If you write an = operator after a parameter, followed by an expression, the
value of that expression will replace the argument when it is not given.

For example, this version of power makes its second argument optional. If
you don’t provide it or pass the value undefined, it will default to two, and the
function will behave like square.

function power(base, exponent = 2) {
let result = 1;
for (let count = @; count < exponent; count++) {
result *= base;

b

return result;

}

console.log(power(4));

// > 16
console.log(power(2, 6));
// - 64

In the next chapter, we will see a way in which a function body can get at
the whole list of arguments it was passed. This is helpful because it makes
it possible for a function to accept any number of arguments. For example,
console. log does this—it outputs all of the values it is given.

console.log("C", "0", 2);
// - CO0O 2

CLOSURE

The ability to treat functions as values, combined with the fact that local
bindings are re-created every time a function is called, brings up an interesting
question. What happens to local bindings when the function call that created
them is no longer active?

The following code shows an example of this. It defines a function, wrapValue,
that creates a local binding. It then returns a function that accesses and returns
this local binding.

function wrapValue(n) {
let local = n;
return () => local;

}

47

let wrapl = wrapValue(1);
let wrap2 = wrapValue(2);
console.log(wrap1());
/=1
console.log(wrap2());

// = 2

This is allowed and works as you’d hope—both instances of the binding can
still be accessed. This situation is a good demonstration of the fact that local
bindings are created anew for every call, and different calls can’t trample on
one another’s local bindings.

This feature—being able to reference a specific instance of a local binding in
an enclosing scope—is called closure. A function that references bindings from
local scopes around it is called a closure. This behavior not only frees you from
having to worry about lifetimes of bindings but also makes it possible to use
function values in some creative ways.

With a slight change, we can turn the previous example into a way to create
functions that multiply by an arbitrary amount.

function multiplier(factor) {
return number => number x factor;

3

let twice = multiplier(2);
console.log(twice(5));
// > 10

The explicit local binding from the wrapVvalue example isn’t really needed
since a parameter is itself a local binding.

Thinking about programs like this takes some practice. A good mental model
is to think of function values as containing both the code in their body and the
environment in which they are created. When called, the function body sees
the environment in which it was created, not the environment in which it is
called.

In the example, multiplier is called and creates an environment in which its
factor parameter is bound to 2. The function value it returns, which is stored
in twice, remembers this environment. So when that is called, it multiplies its
argument by 2.

48

RECURSION

It is perfectly okay for a function to call itself, as long as it doesn’t do it so
often that it overflows the stack. A function that calls itself is called recursive.
Recursion allows some functions to be written in a different style. Take, for
example, this alternative implementation of power:

function power(base, exponent) {
if (exponent == 0) {
return 1;
} else {
return base * power(base, exponent - 1);

b
b

console.log(power(2, 3));
// = 8

This is rather close to the way mathematicians define exponentiation and
arguably describes the concept more clearly than the looping variant. The
function calls itself multiple times with ever smaller exponents to achieve the
repeated multiplication.

But this implementation has one problem: in typical JavaScript implementa-
tions, it’s about three times slower than the looping version. Running through
a simple loop is generally cheaper than calling a function multiple times.

The dilemma of speed versus elegance is an interesting one. You can see it as
a kind of continuum between human-friendliness and machine-friendliness. Al-
most any program can be made faster by making it bigger and more convoluted.
The programmer has to decide on an appropriate balance.

In the case of the power function, the inelegant (looping) version is still fairly
simple and easy to read. It doesn’t make much sense to replace it with the
recursive version. Often, though, a program deals with such complex concepts
that giving up some efficiency in order to make the program more straightfor-
ward is helpful.

Worrying about efficiency can be a distraction. It’s yet another factor that
complicates program design, and when you're doing something that’s already
difficult, that extra thing to worry about can be paralyzing.

Therefore, always start by writing something that’s correct and easy to un-
derstand. If you're worried that it’s too slow—which it usually isn’t since
most code simply isn’t executed often enough to take any significant amount
of time—you can measure afterward and improve it if necessary.

49

Recursion is not always just an inefficient alternative to looping. Some prob-
lems really are easier to solve with recursion than with loops. Most often these
are problems that require exploring or processing several “branches”; each of
which might branch out again into even more branches.

Consider this puzzle: by starting from the number 1 and repeatedly either
adding 5 or multiplying by 3, an infinite set of numbers can be produced. How
would you write a function that, given a number, tries to find a sequence of
such additions and multiplications that produces that number?

For example, the number 13 could be reached by first multiplying by 3 and
then adding 5 twice, whereas the number 15 cannot be reached at all.

Here is a recursive solution:

function findSolution(target) {
function find(current, history) {

if (current == target) {
return history;

} else if (current > target) {
return null;

} else {
return find(current + 5, ‘(${history} + 5)') ||

find(current * 3, ‘(${history} * 3)');
}

}
return find(1, "1");

}

console.log(findSolution(24));
/7= (((1 * 3) +5) * 3)

Note that this program doesn’t necessarily find the shortest sequence of op-
erations. It is satisfied when it finds any sequence at all.

It is okay if you don’t see how it works right away. Let’s work through it,
since it makes for a great exercise in recursive thinking.

The inner function find does the actual recursing. It takes two arguments:
the current number and a string that records how we reached this number. If
it finds a solution, it returns a string that shows how to get to the target. If
no solution can be found starting from this number, it returns null.

To do this, the function performs one of three actions. If the current number
is the target number, the current history is a way to reach that target, so it
is returned. If the current number is greater than the target, there’s no sense
in further exploring this branch because both adding and multiplying will only

50

make the number bigger, so it returns null. Finally, if we're still below the
target number, the function tries both possible paths that start from the current
number by calling itself twice, once for addition and once for multiplication. If
the first call returns something that is not null, it is returned. Otherwise, the
second call is returned, regardless of whether it produces a string or null.

To better understand how this function produces the effect we’re looking for,
let’s look at all the calls to find that are made when searching for a solution
for the number 13.

find(1, "1")
find(6, "(1 + 5)")
find(11, "((1 + 5) + 5)")
find(16, "(((1 + 5) + 5) + 5)")

too big
find(33, "(((1 +5) +5) *x 3)")
too big
find(18, "((1 + 5) *x 3)")
too big

find(3, "(1 * 3)")
find(8, "((1 * 3) + 5)")
find(13, "(((1 * 3) + 5) + 5)")
found!

The indentation indicates the depth of the call stack. The first time find is
called, it starts by calling itself to explore the solution that starts with (1 + 5).
That call will further recurse to explore every continued solution that yields a
number less than or equal to the target number. Since it doesn’t find one that
hits the target, it returns null back to the first call. There the || operator
causes the call that explores (1 * 3) to happen. This search has more luck—
its first recursive call, through yet another recursive call, hits upon the target
number. That innermost call returns a string, and each of the || operators
in the intermediate calls passes that string along, ultimately returning the
solution.

GROWING FUNCTIONS

There are two more or less natural ways for functions to be introduced into
programs.

The first is that you find yourself writing similar code multiple times. You’d
prefer not to do that. Having more code means more space for mistakes to
hide and more material to read for people trying to understand the program.

o1

So you take the repeated functionality, find a good name for it, and put it into
a function.

The second way is that you find you need some functionality that you haven’t
written yet and that sounds like it deserves its own function. You'll start by
naming the function, and then you’ll write its body. You might even start
writing code that uses the function before you actually define the function
itself.

How difficult it is to find a good name for a function is a good indication
of how clear a concept it is that you're trying to wrap. Let’s go through an
example.

We want to write a program that prints two numbers: the numbers of cows
and chickens on a farm, with the words Cows and Chickens after them and zeros
padded before both numbers so that they are always three digits long.

007 Cows
011 Chickens

This asks for a function of two arguments—the number of cows and the
number of chickens. Let’s get coding.

function printFarmInventory(cows, chickens) {
let cowString = String(cows);
while (cowString.length < 3) {
cowString = "@" + cowString;

}

console.log('${cowString} Cows');

let chickenString = String(chickens);

while (chickenString.length < 3) {
chickenString = "@" + chickenString;

}
console.log('${chickenString} Chickens‘);

}
printFarmInventory(7, 11);

Writing . length after a string expression will give us the length of that string.
Thus, the while loops keep adding zeros in front of the number strings until
they are at least three characters long.

Mission accomplished! But just as we are about to send the farmer the code
(along with a hefty invoice), she calls and tells us she’s also started keeping
pigs, and couldn’t we please extend the software to also print pigs?

We sure can. But just as we’re in the process of copying and pasting those

52

four lines one more time, we stop and reconsider. There has to be a better way.
Here’s a first attempt:

function printZeroPaddedWithLabel (number, label) {
let numberString = String(number);
while (numberString.length < 3) {
numberString = "@" + numberString;

3
console.log('${numberString} ${label}');

}

function printFarmInventory(cows, chickens, pigs) {
printZeroPaddedWithLabel (cows, "Cows");
printZeroPaddedWithLabel (chickens, "Chickens");
printZeroPaddedWithlLabel (pigs, "Pigs");

b

printFarmInventory(7, 11, 3);

It works! But that name, printZeroPaddedWithLabel, is a little awkward.
It conflates three things—printing, zero-padding, and adding a label—into a
single function.

Instead of lifting out the repeated part of our program wholesale, let’s try
to pick out a single concept.

function zeroPad(number, width) {
let string = String(number);
while (string.length < width) {
string = "@" + string;

}

return string;

3

function printFarmInventory(cows, chickens, pigs) {
console.log('${zeroPad(cows, 3)3} Cows');
console.log('${zeroPad(chickens, 3)3} Chickens');
console.log('${zeroPad(pigs, 3)} Pigs');

}

printFarmInventory(7, 16, 3);

A function with a nice, obvious name like zeroPad makes it easier for someone
who reads the code to figure out what it does. And such a function is useful in

53

more situations than just this specific program. For example, you could use it
to help print nicely aligned tables of numbers.

How smart and versatile should our function be? We could write anything,
from a terribly simple function that can only pad a number to be three charac-
ters wide to a complicated generalized number-formatting system that handles
fractional numbers, negative numbers, alignment of decimal dots, padding with
different characters, and so on.

A useful principle is to not add cleverness unless you are absolutely sure
you're going to need it. It can be tempting to write general “frameworks” for
every bit of functionality you come across. Resist that urge. You won’t get any
real work done—you’ll just be writing code that you never use.

FUNCTIONS AND SIDE EFFECTS

Functions can be roughly divided into those that are called for their side effects
and those that are called for their return value. (Though it is definitely also
possible to both have side effects and return a value.)

The first helper function in the farm example, printZeroPaddedWithLabel,
is called for its side effect: it prints a line. The second version, zeroPad, is
called for its return value. It is no coincidence that the second is useful in more
situations than the first. Functions that create values are easier to combine in
new ways than functions that directly perform side effects.

A pure function is a specific kind of value-producing function that not only
has no side effects but also doesn’t rely on side effects from other code—for
example, it doesn’t read global bindings whose value might change. A pure
function has the pleasant property that, when called with the same arguments,
it always produces the same value (and doesn’t do anything else). A call to
such a function can be substituted by its return value without changing the
meaning of the code. When you are not sure that a pure function is working
correctly, you can test it by simply calling it and know that if it works in that
context, it will work in any context. Nonpure functions tend to require more
scaffolding to test.

Still, there’s no need to feel bad when writing functions that are not pure or
to wage a holy war to purge them from your code. Side effects are often useful.
There’d be no way to write a pure version of console.log, for example, and
console.log is good to have. Some operations are also easier to express in an
efficient way when we use side effects, so computing speed can be a reason to
avoid purity.

o4

SUMMARY

This chapter taught you how to write your own functions. The function key-
word, when used as an expression, can create a function value. When used as
a statement, it can be used to declare a binding and give it a function as its
value. Arrow functions are yet another way to create functions.

// Define f to hold a function value
const f = function(a) {
console.log(a + 2);

};

// Declare g to be a function
function g(a, b) {
return a x b * 3.5;

3

// A less verbose function value
let h = a =>a % 3;

A key aspect in understanding functions is understanding scopes. Each block
creates a new scope. Parameters and bindings declared in a given scope are
local and not visible from the outside. Bindings declared with var behave
differently—they end up in the nearest function scope or the global scope.

Separating the tasks your program performs into different functions is help-
ful. You won’t have to repeat yourself as much, and functions can help organize
a program by grouping code into pieces that do specific things.

EXERCISES

MINIMUM

The previous chapter introduced the standard function Math.min that returns
its smallest argument. We can build something like that now. Write a function
min that takes two arguments and returns their minimum.

RECURSION

We've seen that % (the remainder operator) can be used to test whether a
number is even or odd by using % 2 to see whether it’s divisible by two. Here’s
another way to define whether a positive whole number is even or odd:

95

e Zero is even.
¢ One is odd.

e For any other number N, its evenness is the same as N - 2.

Define a recursive function isEven corresponding to this description. The
function should accept a single parameter (a positive, whole number) and return
a Boolean.

Test it on 50 and 75. See how it behaves on -1. Why? Can you think of a
way to fix this?

BEAN COUNTING

You can get the Nth character, or letter, from a string by writing "string"[N].
The returned value will be a string containing only one character (for example,
"b"). The first character has position 0, which causes the last one to be found at
position string.length - 1. In other words, a two-character string has length
2, and its characters have positions 0 and 1.

Write a function countBs that takes a string as its only argument and returns
a number that indicates how many uppercase “B” characters there are in the
string.

Next, write a function called countChar that behaves like countBs, except
it takes a second argument that indicates the character that is to be counted
(rather than counting only uppercase “B” characters). Rewrite countBs to
make use of this new function.

o6

“On two occasions I have been asked, ‘Pray, Mr. Babbage, if you put
into the machine wrong figures, will the right answers come out?’
[...] T am not able rightly to apprehend the kind of confusion of ideas
that could provoke such a question.”

—Charles Babbage, Passages from the Life of a Philosopher (1864)

DATA STRUCTURES: OBJECTS AND ARRAYS

Numbers, Booleans, and strings are the atoms that data structures are built
from. Many types of information require more than one atom, though. Ob-
jects allow us to group values—including other objects—to build more complex
structures.

The programs we have built so far have been limited by the fact that they
were operating only on simple data types. This chapter will introduce basic
data structures. By the end of it, you’ll know enough to start writing useful
programs.

The chapter will work through a more or less realistic programming example,
introducing concepts as they apply to the problem at hand. The example code
will often build on functions and bindings that were introduced earlier in the
text.

The online coding sandbox for the book (https://eloquentjavascript.net/code)
provides a way to run code in the context of a specific chapter. If you decide to
work through the examples in another environment, be sure to first download
the full code for this chapter from the sandbox page.

THE WERESQUIRREL

Every now and then, usually between 8 p.m. and 10 p.m., Jacques finds himself
transforming into a small furry rodent with a bushy tail.

On one hand, Jacques is quite glad that he doesn’t have classic lycanthropy.
Turning into a squirrel does cause fewer problems than turning into a wolf.
Instead of having to worry about accidentally eating the neighbor (that would
be awkward), he worries about being eaten by the neighbor’s cat. After two
occasions where he woke up on a precariously thin branch in the crown of an
oak, naked and disoriented, he has taken to locking the doors and windows of
his room at night and putting a few walnuts on the floor to keep himself busy.

That takes care of the cat and tree problems. But Jacques would prefer to
get rid of his condition entirely. The irregular occurrences of the transformation

o7

https://eloquentjavascript.net/code

make him suspect that they might be triggered by something. For a while, he
believed that it happened only on days when he had been near oak trees. But
avoiding oak trees did not stop the problem.

Switching to a more scientific approach, Jacques has started keeping a daily
log of everything he does on a given day and whether he changed form. With
this data he hopes to narrow down the conditions that trigger the transforma-
tions.

The first thing he needs is a data structure to store this information.

DATA SETS

To work with a chunk of digital data, we’ll first have to find a way to represent
it in our machine’s memory. Say, for example, that we want to represent a
collection of the numbers 2, 3, 5, 7, and 11.

We could get creative with strings—after all, strings can have any length, so
we can put a lot of data into them—and use "2 3 5 7 11" as our representation.
But this is awkward. You’d have to somehow extract the digits and convert
them back to numbers to access them.

Fortunately, JavaScript provides a data type specifically for storing sequences
of values. It is called an array and is written as a list of values between square
brackets, separated by commas.

let 1listOfNumbers = [2, 3, 5, 7, 11];
console.log(listOfNumbers[2]);

// > 5

console.log(listOfNumbers[0]);

// = 2

console.log(listOfNumbers[2 - 11);

// =3

The notation for getting at the elements inside an array also uses square
brackets. A pair of square brackets immediately after an expression, with
another expression inside of them, will look up the element in the left-hand
expression that corresponds to the index given by the expression in the brackets.

The first index of an array is zero, not one. So the first element is retrieved
with 1istOfNumbers[0]. Zero-based counting has a long tradition in technology
and in certain ways makes a lot of sense, but it takes some getting used to.
Think of the index as the amount of items to skip, counting from the start of
the array.

o8

PROPERTIES

We've seen a few suspicious-looking expressions like myString.length (to get
the length of a string) and Math.max (the maximum function) in past chapters.
These are expressions that access a property of some value. In the first case,
we access the length property of the value in myString. In the second, we
access the property named max in the Math object (which is a collection of
mathematics-related constants and functions).

Almost all JavaScript values have properties. The exceptions are null and
undefined. If you try to access a property on one of these nonvalues, you get
an error.

null.length;
// = TypeError: null has no properties

The two main ways to access properties in JavaScript are with a dot and with
square brackets. Both value.x and value[x] access a property on value—but
not necessarily the same property. The difference is in how x is interpreted.
When using a dot, the word after the dot is the literal name of the property.
When using square brackets, the expression between the brackets is evaluated to
get the property name. Whereas value.x fetches the property of value named
“x”, value[x] tries to evaluate the expression x and uses the result, converted
to a string, as the property name.

So if you know that the property you are interested in is called color, you say
value.color. If you want to extract the property named by the value held in
the binding i, you say value[i]. Property names are strings. They can be any
string, but the dot notation works only with names that look like valid binding
names. So if you want to access a property named 2 or John Doe, you must
use square brackets: value[2] or value["John Doe"].

The elements in an array are stored as the array’s properties, using numbers
as property names. Because you can’t use the dot notation with numbers and
usually want to use a binding that holds the index anyway, you have to use the
bracket notation to get at them.

The length property of an array tells us how many elements it has. This
property name is a valid binding name, and we know its name in advance, so
to find the length of an array, you typically write array.length because that’s
easier to write than array["length"].

29

METHODS

Both string and array values contain, in addition to the length property, a
number of properties that hold function values.

let doh = "Doh";

console.log(typeof doh.toUpperCase);
// - function
console.log(doh.toUpperCase());

// - DOH

Every string has a toUpperCase property. When called, it will return a copy
of the string in which all letters have been converted to uppercase. There is
also toLowerCase, going the other way.

Interestingly, even though the call to toUpperCase does not pass any argu-
ments, the function somehow has access to the string "Doh", the value whose
property we called. How this works is described in Chapter 6.

Properties that contain functions are generally called methods of the value
they belong to, as in “toUpperCase is a method of a string”.

This example demonstrates two methods you can use to manipulate arrays:

let sequence = [1, 2, 31;
sequence.push(4);
sequence.push(5);
console.log(sequence);

// = [1, 2, 3, 4, 5]
console.log(sequence.pop());
// =»5
console.log(sequence);

// - [1, 2, 3, 4]

The push method adds values to the end of an array, and the pop method
does the opposite, removing the last value in the array and returning it.

These somewhat silly names are the traditional terms for operations on a
stack. A stack, in programming, is a data structure that allows you to push
values into it and pop them out again in the opposite order so that the thing
that was added last is removed first. These are common in programming—you
might remember the function call stack from the previous chapter, which is an
instance of the same idea.

60

OBJECTS

Back to the weresquirrel. A set of daily log entries can be represented as an
array. But the entries do not consist of just a number or a string—each entry
needs to store a list of activities and a Boolean value that indicates whether
Jacques turned into a squirrel or not. Ideally, we would like to group these
together into a single value and then put those grouped values into an array of
log entries.

Values of the type object are arbitrary collections of properties. One way to
create an object is by using braces as an expression.

let dayl = {
squirrel: false,
events: ["work", "touched tree", "pizza", "running"]
s
console.log(day1l.squirrel);
// - false

console.log(day1.wolf);
// - undefined
dayl.wolf = false;
console.log(dayl.wolf);
// - false

Inside the braces, there is a list of properties separated by commas. Each
property has a name followed by a colon and a value. When an object is written
over multiple lines, indenting it like in the example helps with readability.
Properties whose names aren’t valid binding names or valid numbers have to
be quoted.

let descriptions = {
work: "Went to work",
“touched tree": "Touched a tree"

1

This means that braces have two meanings in JavaScript. At the start of
a statement, they start a block of statements. In any other position, they
describe an object. Fortunately, it is rarely useful to start a statement with an
object in braces, so the ambiguity between these two is not much of a problem.

Reading a property that doesn’t exist will give you the value undefined.

It is possible to assign a value to a property expression with the = operator.
This will replace the property’s value if it already existed or create a new

61

property on the object if it didn’t.

To briefly return to our tentacle model of bindings—property bindings are
similar. They grasp values, but other bindings and properties might be holding
onto those same values. You may think of objects as octopuses with any number
of tentacles, each of which has a name tattooed on it.

The delete operator cuts off a tentacle from such an octopus. It is a unary
operator that, when applied to an object property, will remove the named
property from the object. This is not a common thing to do, but it is possible.

let anObject = {left: 1, right: 2};
console.log(anObject.left);

// =1

delete anObject.left;
console.log(anObject.left);

// - undefined

console.log("left" in anObject);

// - false

console.log("right" in anObject);
// = true

The binary in operator, when applied to a string and an object, tells you
whether that object has a property with that name. The difference between
setting a property to undefined and actually deleting it is that, in the first
case, the object still has the property (it just doesn’t have a very interesting
value), whereas in the second case the property is no longer present and in will
return false.

To find out what properties an object has, you can use the Object.keys
function. You give it an object, and it returns an array of strings—the object’s
property names

console.log(Object.keys({x: @, y: 0, z: 23}));
// - [lell’ Ilyll, I|ZI|]

There’s an Object.assign function that copies all properties from one object
into another.

let objectA = {a: 1, b: 2};
Object.assign(objectA, {b: 3, c: 4});
console.log(objectA);

// = {a: 1, b: 3, c: 4}

62

Arrays, then, are just a kind of object specialized for storing sequences of
things. If you evaluate typeof [1], it produces "object". You can see them as
long, flat octopuses with all their tentacles in a neat row, labeled with numbers.

We will represent the journal that Jacques keeps as an array of objects.

let journal = [

{events: ["work", "touched tree", "pizza",
“running", "television"],

squirrel: false},

{events: ["work", "ice cream", "cauliflower",
“"lasagna", "touched tree", "brushed teeth"],

squirrel: false},

{events: ["weekend", "cycling", "break", "peanuts",
"beer"],

squirrel: true},

/* and so on... */

1;
MUTABILITY

We will get to actual programming real soon now. First there’s one more piece
of theory to understand.

We saw that object values can be modified. The types of values discussed in
earlier chapters, such as numbers, strings, and Booleans, are all immutable—it
is impossible to change values of those types. You can combine them and derive
new values from them, but when you take a specific string value, that value
will always remain the same. The text inside it cannot be changed. If you
have a string that contains "cat", it is not possible for other code to change a
character in your string to make it spell "rat".

Objects work differently. You can change their properties, causing a single
object value to have different content at different times.

When we have two numbers, 120 and 120, we can consider them precisely
the same number, whether or not they refer to the same physical bits. With
objects, there is a difference between having two references to the same object
and having two different objects that contain the same properties. Consider
the following code:

let objectl = {value: 103};
let object2 = objectil;
let object3 = {value: 103};

63

console.log(objectl == object2);
// - true
console.log(objectl == object3);
// - false

objectl.value = 15;
console.log(object2.value);
// > 15
console.log(object3.value);
// = 10

The object1 and object2 bindings grasp the same object, which is why
changing object1 also changes the value of object2. They are said to have the
same identity. The binding object3 points to a different object, which initially
contains the same properties as object1 but lives a separate life.

Bindings can also be changeable or constant, but this is separate from the
way their values behave. Even though number values don’t change, you can
use a let binding to keep track of a changing number by changing the value
the binding points at. Similarly, though a const binding to an object can itself
not be changed and will continue to point at the same object, the contents of
that object might change.

const score = {visitors: @, home: 03};
// This is okay

score.visitors = 1;

// This isn't allowed

score = {visitors: 1, home: 13};

When you compare objects with JavaScript’s == operator, it compares by
identity: it will produce true only if both objects are precisely the same value.
Comparing different objects will return false, even if they have identical prop-
erties. There is no “deep” comparison operation built into JavaScript, which
compares objects by contents, but it is possible to write it yourself (which is
one of the exercises at the end of this chapter).

THE LYCANTHROPE'S LOG

So, Jacques starts up his JavaScript interpreter and sets up the environment
he needs to keep his journal.

let journal = [];

64

function addEntry(events, squirrel) {
journal.push({events, squirrel});

3

Note that the object added to the journal looks a little odd. Instead of
declaring properties like events: events, it just gives a property name. This
is shorthand that means the same thing—if a property name in brace notation
isn’t followed by a value, its value is taken from the binding with the same
name.

So then, every evening at 10 p.m.—or sometimes the next morning, after
climbing down from the top shelf of his bookcase—Jacques records the day.

addentry(["work", "touched tree", "pizza", "running",
“"television"], false);
addEntry(["work", "ice cream", "cauliflower", "lasagna",

“touched tree", "brushed teeth"], false);
addEntry (["weekend", "cycling", "break", "peanuts",
"beer"], true);

Once he has enough data points, he intends to use statistics to find out which
of these events may be related to the squirrelifications.

Correlation is a measure of dependence between statistical variables. A sta-
tistical variable is not quite the same as a programming variable. In statistics
you typically have a set of measurements, and each variable is measured for
every measurement. Correlation between variables is usually expressed as a
value that ranges from -1 to 1. Zero correlation means the variables are not
related. A correlation of one indicates that the two are perfectly related—if
you know one, you also know the other. Negative one also means that the
variables are perfectly related but that they are opposites—when one is true,
the other is false.

To compute the measure of correlation between two Boolean variables, we
can use the phi coefficient (). This is a formula whose input is a frequency
table containing the number of times the different combinations of the variables
were observed. The output of the formula is a number between -1 and 1 that
describes the correlation.

We could take the event of eating pizza and put that in a frequency table
like this, where each number indicates the amount of times that combination
occurred in our measurements

65

»

No squirrel, no pizza76 No squirrel, pizza 9
1

If we call that table n, we can compute ¢ using the following formula:

Squirrel, no pizza 4 Squirrel, pizza

_ M11m00 — N10M01 (4.1)
vV T1eT0eTle17e(

(If at this point you're putting the book down to focus on a terrible flashback
to 10th grade math class—hold on! I do not intend to torture you with endless
pages of cryptic notation—it’s just this one formula for now. And even with
this one, all we do is turn it into JavaScript.)

The notation ng; indicates the number of measurements where the first vari-
able (squirrelness) is false (0) and the second variable (pizza) is true (1). In
the pizza table, ng; is 9.

The value nje refers to the sum of all measurements where the first variable
is true, which is 5 in the example table. Likewise, neo refers to the sum of the
measurements where the second variable is false.

So for the pizza table, the part above the division line (the dividend) would
be 1x76—4x9 = 40, and the part below it (the divisor) would be the square
root of 5x85x10x80, or v/340000. This comes out to ¢ ~ 0.069, which is tiny.
Eating pizza does not appear to have influence on the transformations.

COMPUTING CORRELATION

We can represent a two-by-two table in JavaScript with a four-element array
([76, 9, 4, 11). We could also use other representations, such as an array con-
taining two two-element arrays ([[76, 91, [4, 11]) or an object with property
names like "11" and "01", but the flat array is simple and makes the expres-
sions that access the table pleasantly short. We’ll interpret the indices to the
array as two-bit binary numbers, where the leftmost (most significant) digit
refers to the squirrel variable and the rightmost (least significant) digit refers
to the event variable. For example, the binary number 10 refers to the case

66

where Jacques did turn into a squirrel, but the event (say, “pizza”) didn’t oc-
cur. This happened four times. And since binary 10 is 2 in decimal notation,
we will store this number at index 2 of the array.

This is the function that computes the ¢ coefficient from such an array:

function phi(table) {
return (table[3] * table[@] - table[2] * table[1]) /
Math.sqrt((table[2] + table[3]) =
(table[@0] + table[1]) =
(table[1] + table[3]) =*
(table[0] + table[2]));
}

console.log(phi([76, 9, 4, 11));
// - 0.068599434

This is a direct translation of the ¢ formula into JavaScript. Math.sqrt
is the square root function, as provided by the Math object in a standard
JavaScript environment. We have to add two fields from the table to get fields
like n1e because the sums of rows or columns are not stored directly in our data
structure.

Jacques kept his journal for three months. The resulting data set is available
in the coding sandbox for this chapter (https://eloquentjavascript.net/code#4),
where it is stored in the JOURNAL binding and in a downloadable file.

To extract a two-by-two table for a specific event from the journal, we must
loop over all the entries and tally how many times the event occurs in relation
to squirrel transformations.

function tableFor(event, journal) {

let table = [0, 0, 0, 0];

for (let i = @; i < journal.length; it++) {
let entry = journallil], index = 0;
if (entry.events.includes(event)) index += 1;
if (entry.squirrel) index += 2;
table[index] += 1;

}

return table;

}

console.log(tableFor("pizza", JOURNAL));
// - [76, 9, 4, 1]

67

https://eloquentjavascript.net/code#4
https://eloquentjavascript.net/code#4
https://eloquentjavascript.net/code/journal.js

Arrays have an includes method that checks whether a given value exists in
the array. The function uses that to determine whether the event name it is
interested in is part of the event list for a given day.

The body of the loop in tableFor figures out which box in the table each
journal entry falls into by checking whether the entry contains the specific event
it’s interested in and whether the event happens alongside a squirrel incident.
The loop then adds one to the correct box in the table.

We now have the tools we need to compute individual correlations. The only
step remaining is to find a correlation for every type of event that was recorded
and see whether anything stands out.

ARRAY LOOPS

In the tableFor function, there’s a loop like this:

for (let i = @; i < JOURNAL.length; i++) {
let entry = JOURNAL[i];
// Do something with entry

3

This kind of loop is common in classical JavaScript—going over arrays one
element at a time is something that comes up a lot, and to do that you’d run
a counter over the length of the array and pick out each element in turn.

There is a simpler way to write such loops in modern JavaScript.

for (let entry of JOURNAL) {
console.log('${entry.events.length} events.');

}

When a for loop looks like this, with the word of after a variable definition,
it will loop over the elements of the value given after of. This works not only
for arrays but also for strings and some other data structures. We'll discuss
how it works in Chapter 6.

THE FINAL ANALYSIS

We need to compute a correlation for every type of event that occurs in the
data set. To do that, we first need to find every type of event.

function journalEvents(journal) {

68

let events = [];
for (let entry of journal) {
for (let event of entry.events) {
if (!events.includes(event)) {
events.push(event);

3
3
by

return events;

3

console.log(journalEvents(JOURNAL));
// - ["carrot", "exercise", "weekend", "bread", ..]

By going over all the events and adding those that aren’t already in there to
the events array, the function collects every type of event.
Using that, we can see all the correlations.

for (let event of journalEvents(JOURNAL)) {
console.log(event + ":", phi(tableFor(event, JOURNAL)));

3

// = carrot: 0.0140970969

// = exercise: 0.0685994341

// - weekend: ©.1371988681

// = bread: -0.0757554019

// - pudding: -0.0648203724

// and so on...

Most correlations seem to lie close to zero. Eating carrots, bread, or pudding
apparently does not trigger squirrel-lycanthropy. It does seem to occur some-
what more often on weekends. Let’s filter the results to show only correlations
greater than 0.1 or less than -0.1.

for (let event of journalEvents(JOURNAL)) {
let correlation = phi(tableFor(event, JOURNAL));

if (correlation > 0.1 || correlation < -0.1) {
console.log(event + ":", correlation);
3
3
// - weekend: 0.1371988681
// = brushed teeth: -0.3805211953
// - candy: 0.1296407447
// = work: -0.1371988681

69

// - spaghetti: 0.2425356250
// = reading: 0.1106828054
// - peanuts: 0.5902679812

Aha! There are two factors with a correlation that’s clearly stronger than
the others. Eating peanuts has a strong positive effect on the chance of turning
into a squirrel, whereas brushing his teeth has a significant negative effect.

Interesting. Let’s try something.

for (let entry of JOURNAL) {
if (entry.events.includes("peanuts") &&
lentry.events.includes("brushed teeth")) {
entry.events.push("peanut teeth");

3

}
console.log(phi(tableFor("peanut teeth", JOURNAL)));

// =1

That’s a strong result. The phenomenon occurs precisely when Jacques eats
peanuts and fails to brush his teeth. If only he weren’t such a slob about dental
hygiene, he’d have never even noticed his affliction.

Knowing this, Jacques stops eating peanuts altogether and finds that his
transformations don’t come back.

For a few years, things go great for Jacques. But at some point he loses his
job. Because he lives in a nasty country where having no job means having
no medical services, he is forced to take employment with a circus where he
performs as The Incredible Squirrelman, stuffing his mouth with peanut butter
before every show.

One day, fed up with this pitiful existence, Jacques fails to change back into
his human form, hops through a crack in the circus tent, and vanishes into the
forest. He is never seen again.

FURTHER ARRAYOLOGY

Before finishing the chapter, I want to introduce you to a few more object-
related concepts. I'll start by introducing some generally useful array methods.

We saw push and pop, which add and remove elements at the end of an array,
earlier in this chapter. The corresponding methods for adding and removing
things at the start of an array are called unshift and shift.

70

let todoList = [];
function remember(task) {
todoList.push(task);

3
function getTask() {

return todolList.shift();

}
function rememberUrgently(task) {

todolList.unshift(task);
}

That program manages a queue of tasks. You add tasks to the end of the
queue by calling remember("groceries"), and when you're ready to do some-
thing, you call getTask() to get (and remove) the front item from the queue
The rememberUrgently function also adds a task but adds it to the front instead
of the back of the queue.

To search for a specific value, arrays provide an index0f method. The method
searches through the array from the start to the end and returns the index at
which the requested value was found—or -1 if it wasn’t found. To search from
the end instead of the start, there’s a similar method called lastIndexOf.

console.log([1, 2, 3, 2, 1].index0f(2));
/=1

console.log([1, 2, 3, 2, 1].lastIndex0f(2));
// - 3

Both indexOf and lastIndexOf take an optional second argument that indi-
cates where to start searching.

Another fundamental array method is slice, which takes start and end in-
dices and returns an array that has only the elements between them. The start
index is inclusive, the end index exclusive.

console.log([@, 1, 2, 3, 4].slice(2, 4));
// - [2, 3]

console.log([0, 1, 2, 3, 4].slice(2));

// - [2, 3, 4]

When the end index is not given, slice will take all of the elements after the
start index. You can also omit the start index to copy the entire array.

The concat method can be used to glue arrays together to create a new array,
similar to what the + operator does for strings.

71

The following example shows both concat and slice in action. It takes an
array and an index, and it returns a new array that is a copy of the original
array with the element at the given index removed.

function remove(array, index) {
return array.slice(@, index)
.concat(array.slice(index + 1));

}

console.log(remove(["a", "b", "c", "d", "e"1, 2));
// - [Ilall, llbll, Ildll, llelI]

If you pass concat an argument that is not an array, that value will be added
to the new array as if it were a one-element array.

STRINGS AND THEIR PROPERTIES

We can read properties like length and toUpperCase from string values. But if
you try to add a new property, it doesn’t stick.

let kim = "Kim";

kim.age = 88;

console.log(kim.age);

// - undefined

Values of type string, number, and Boolean are not objects, and though
the language doesn’t complain if you try to set new properties on them, it
doesn’t actually store those properties. As mentioned earlier, such values are
immutable and cannot be changed.

But these types do have built-in properties. Every string value has a number
of methods. Some very useful ones are slice and indexOf, which resemble the
array methods of the same name.

console.log("coconuts".slice(4, 7));
// = nut
console.log("coconut".indexOf ("u"));
// =»5

One difference is that a string’s index0f can search for a string containing
more than one character, whereas the corresponding array method looks only
for a single element.

72

console.log("one two three".indexOf("ee"));
/7 > 11

The trim method removes whitespace (spaces, newlines, tabs, and similar
characters) from the start and end of a string.

console.log(" okay \n ".trim());
// - okay

The zeroPad function from the previous chapter also exists as a method.
It is called padStart and takes the desired length and padding character as
arguments.

console.log(String(6).padStart(3, "0"));
// > 006

You can split a string on every occurrence of another string with split and
join it again with join.

let sentence = "Secretarybirds specialize in stomping";
let words = sentence.split(" ");
console.log(words);

// - ["Secretarybirds", "specialize",
console.log(words.join(". "));

// - Secretarybirds. specialize. in. stomping

in", "stomping"]

A string can be repeated with the repeat method, which creates a new string
containing multiple copies of the original string, glued together.

console.log("LA".repeat(3));
// = LALALA

We have already seen the string type’s length property. Accessing the indi-
vidual characters in a string looks like accessing array elements (with a caveat
that we’ll discuss in Chapter 5).

let string = "abc";
console.log(string.length);
// -3
console.log(stringl[1]);

// > b

73

REST PARAMETERS

It can be useful for a function to accept any number of arguments. For example,
Math.max computes the maximum of all the arguments it is given.

To write such a function, you put three dots before the function’s last pa-
rameter, like this

function max(...numbers) {
let result = -Infinity;
for (let number of numbers) {
if (number > result) result = number;

}

return result;
}
console.log(max(4, 1, 9, -2));
// > 9

When such a function is called, the rest parameter is bound to an array
containing all further arguments. If there are other parameters before it, their
values aren’t part of that array. When, as in max, it is the only parameter, it
will hold all arguments.

You can use a similar three-dot notation to call a function with an array of
arguments.

let numbers =[5, 1, 71];
console.log(max(...numbers));
/=7

This “spreads” out the array into the function call, passing its elements as
separate arguments. It is possible to include an array like that along with other
arguments, as in max(9, ...numbers, 2).

Square bracket array notation similarly allows the triple-dot operator to
spread another array into the new array.

let words = ["never", "fully"];
console.log(["will", ...words, "understand"]);
// - ["will", "never", "fully", "understand"]

74

THE MATH OBJECT

As we've seen, Math is a grab bag of number-related utility functions, such as
Math.max (maximum), Math.min (minimum), and Math.sqrt (square root).

The Math object is used as a container to group a bunch of related function-
ality. There is only one Math object, and it is almost never useful as a value.
Rather, it provides a namespace so that all these functions and values do not
have to be global bindings.

Having too many global bindings “pollutes” the namespace. The more names
have been taken, the more likely you are to accidentally overwrite the value of
some existing binding. For example, it’s not unlikely to want to name some-
thing max in one of your programs. Since JavaScript’s built-in max function is
tucked safely inside the Math object, we don’t have to worry about overwriting
it.

Many languages will stop you, or at least warn you, when you are defining
a binding with a name that is already taken. JavaScript does this for bindings
you declared with let or const but—perversely—not for standard bindings nor
for bindings declared with var or function.

Back to the Math object. If you need to do trigonometry, Math can help. It
contains cos (cosine), sin (sine), and tan (tangent), as well as their inverse
functions, acos, asin, and atan, respectively. The number = (pi)—or at least
the closest approximation that fits in a JavaScript number—is available as Math
.PI. There is an old programming tradition of writing the names of constant
values in all caps.

function randomPointOnCircle(radius) {
let angle = Math.random() * 2 * Math.PI;
return {x: radius * Math.cos(angle),
y: radius * Math.sin(angle)};
}

console.log(randomPointOnCircle(2));
// > {x: 0.3667, y: 1.966}

If sines and cosines are not something you are familiar with, don’t worry.
When they are used in this book, in Chapter 14, I'll explain them.

The previous example used Math.random. This is a function that returns a
new pseudorandom number between zero (inclusive) and one (exclusive) every
time you call it.

console.log(Math.random());
// > ©.36993729369714856

75

console.log(Math.random());
// - 0.727367032552138
console.log(Math.random());
// ~> 0.40180766698904335

Though computers are deterministic machines—they always react the same
way if given the same input—it is possible to have them produce numbers
that appear random. To do that, the machine keeps some hidden value, and
whenever you ask for a new random number, it performs complicated com-
putations on this hidden value to create a new value. It stores a new value
and returns some number derived from it. That way, it can produce ever new,
hard-to-predict numbers in a way that seems random.

If we want a whole random number instead of a fractional one, we can use
Math.floor (which rounds down to the nearest whole number) on the result of
Math.random.

console.log(Math.floor(Math.random() * 10));
// = 2

Multiplying the random number by 10 gives us a number greater than or
equal to 0 and below 10. Since Math.floor rounds down, this expression will
produce, with equal chance, any number from 0 through 9.

There are also the functions Math.ceil (for “ceiling”, which rounds up to
a whole number), Math.round (to the nearest whole number), and Math.abs,
which takes the absolute value of a number, meaning it negates negative values
but leaves positive ones as they are.

DESTRUCTURING

Let’s go back to the phi function for a moment.

function phi(table) {
return (table[3] * table[@] - table[2] * table[1]) /
Math.sqrt((table[2] table[3]) *
(table[@] + table[1]) =*
(table[1] + table[3]) =*
(table[0] + table[2]));

+

One of the reasons this function is awkward to read is that we have a binding

76

pointing at our array, but we’d much prefer to have bindings for the elements
of the array, that is, let ne@ = table[@] and so on. Fortunately, there is a
succinct way to do this in JavaScript.

function phi([n@@, nd1, nl1@, n11]) {
return (n11 * n@@ - n1@ * nd1) /
Math.sqrt((n1@ + n11) * (n@@ + n@1) *
(n@1 + n11) * (n@d + nl10));

This also works for bindings created with let, var, or const. If you know the
value you are binding is an array, you can use square brackets to “look inside”
of the value, binding its contents.

A similar trick works for objects, using braces instead of square brackets.

let {name} = {name: "Faraji", age: 23};
console.log(name);
// - Faraji

Note that if you try to destructure null or undefined, you get an error, much
as you would if you directly try to access a property of those values.

JSON

Because properties only grasp their value, rather than contain it, objects and
arrays are stored in the computer’s memory as sequences of bits holding the
addresses—the place in memory—of their contents. So an array with another
array inside of it consists of (at least) one memory region for the inner array,
and another for the outer array, containing (among other things) a binary
number that represents the position of the inner array.

If you want to save data in a file for later or send it to another computer over
the network, you have to somehow convert these tangles of memory addresses
to a description that can be stored or sent. You could send over your entire
computer memory along with the address of the value you're interested in, I
suppose, but that doesn’t seem like the best approach.

What we can do is serialize the data. That means it is converted into a
flat description. A popular serialization format is called JSON (pronounced
“Jason”), which stands for JavaScript Object Notation. It is widely used as a
data storage and communication format on the Web, even in languages other
than JavaScript.

77

JSON looks similar to JavaScript’s way of writing arrays and objects, with a
few restrictions. All property names have to be surrounded by double quotes,
and only simple data expressions are allowed—mno function calls, bindings, or
anything that involves actual computation. Comments are not allowed in

JSON.
A journal entry might look like this when represented as JSON data:

{
“squirrel": false,
"events": ["work", "touched tree", "pizza", "running"]

}

JavaScript gives us the functions JSON.stringify and JSON.parse to convert
data to and from this format. The first takes a JavaScript value and returns
a JSON-encoded string. The second takes such a string and converts it to the
value it encodes.

let string = JSON.stringify({squirrel: false,
events: ["weekend"]});

console.log(string);

// > {"squirrel":false,"events":["weekend"]}

console.log(JSON.parse(string).events);

// - ["weekend"]

SUMMARY

Objects and arrays (which are a specific kind of object) provide ways to group
several values into a single value. Conceptually, this allows us to put a bunch
of related things in a bag and run around with the bag, instead of wrapping
our arms around all of the individual things and trying to hold on to them
separately.

Most values in JavaScript have properties, the exceptions being null and
undefined. Properties are accessed using value.prop or value["prop"]. Ob-
jects tend to use names for their properties and store more or less a fixed set
of them. Arrays, on the other hand, usually contain varying amounts of con-
ceptually identical values and use numbers (starting from 0) as the names of
their properties.

There are some named properties in arrays, such as length and a number of
methods. Methods are functions that live in properties and (usually) act on

78

the value they are a property of.
You can iterate over arrays using a special kind of for loop—for (let
element of array).

EXERCISES

THE SUM OF A RANGE

The introduction of this book alluded to the following as a nice way to compute
the sum of a range of numbers:

console.log(sum(range(1, 10)));

Write a range function that takes two arguments, start and end, and returns
an array containing all the numbers from start up to (and including) end.

Next, write a sum function that takes an array of numbers and returns the
sum of these numbers. Run the example program and see whether it does
indeed return 55.

As a bonus assignment, modify your range function to take an optional third
argument that indicates the “step” value used when building the array. If no
step is given, the elements go up by increments of one, corresponding to the
old behavior. The function call range(1, 10, 2) should return [1, 3, 5, 7,
9]. Make sure it also works with negative step values so that range(5, 2, -1)
produces [5, 4, 3, 2].

REVERSING AN ARRAY

Arrays have a reverse method that changes the array by inverting the order in
which its elements appear. For this exercise, write two functions, reverseArray
and reverseArrayInPlace. The first, reverseArray, takes an array as argument
and produces a new array that has the same elements in the inverse order. The
second, reverseArrayInPlace, does what the reverse method does: it modifies
the array given as argument by reversing its elements. Neither may use the
standard reverse method.

Thinking back to the notes about side effects and pure functions in the
previous chapter, which variant do you expect to be useful in more situations?
Which one runs faster?

79

A LIST

Objects, as generic blobs of values, can be used to build all sorts of data struc-
tures. A common data structure is the list (not to be confused with array). A
list is a nested set of objects, with the first object holding a reference to the
second, the second to the third, and so on.

let list = {
value: 1,
rest: {
value: 2,
rest: {
value: 3,
rest: null
3
}
s

The resulting objects form a chain, like this:

value: 1
value: 2
rest: value: 3

rest:
rest: null

A nice thing about lists is that they can share parts of their structure. For
example, if I create two new values {value: 0, rest: list} and {value: -1,
rest: list} (with list referring to the binding defined earlier), they are both
independent lists, but they share the structure that makes up their last three
elements. The original list is also still a valid three-element list.

Write a function arrayTolList that builds up a list structure like the one
shown when given [1, 2, 3] as argument. Also write a listToArray function
that produces an array from a list. Then add a helper function prepend, which
takes an element and a list and creates a new list that adds the element to the
front of the input list, and nth, which takes a list and a number and returns
the element at the given position in the list (with zero referring to the first
element) or undefined when there is no such element.

If you haven’t already, also write a recursive version of nth.

DEEP COMPARISON

The == operator compares objects by identity. But sometimes you’d prefer to
compare the values of their actual properties.

80

Write a function deepEqual that takes two values and returns true only if they
are the same value or are objects with the same properties, where the values
of the properties are equal when compared with a recursive call to deepEqual.

To find out whether values should be compared directly (use the === operator
for that) or have their properties compared, you can use the typeof operator.
If it produces "object" for both values, you should do a deep comparison.
But you have to take one silly exception into account: because of a historical
accident, typeof null also produces "object".

The Object.keys function will be useful when you need to go over the prop-
erties of objects to compare them.

81

“There are two ways of constructing a software design: One way is
to make it so simple that there are obviously no deficiencies, and the
other way is to make it so complicated that there are no obvious
deficiencies.”

—C.A.R. Hoare, 1980 ACM Turing Award Lecture

HIGHER-ORDER FUNCTIONS

A large program is a costly program, and not just because of the time it takes
to build. Size almost always involves complexity, and complexity confuses
programmers. Confused programmers, in turn, introduce mistakes (bugs) into
programs. A large program then provides a lot of space for these bugs to hide,
making them hard to find.

Let’s briefly go back to the final two example programs in the introduction.
The first is self-contained and six lines long.

let total = @, count = 1;
while (count <= 10) {
total += count;
count += 1;

}
console.log(total);

The second relies on two external functions and is one line long.

console.log(sum(range(1, 10)));

Which one is more likely to contain a bug?

If we count the size of the definitions of sum and range, the second program
is also big—even bigger than the first. But still, I'd argue that it is more likely
to be correct.

It is more likely to be correct because the solution is expressed in a vocabulary
that corresponds to the problem being solved. Summing a range of numbers
isn’t about loops and counters. It is about ranges and sums.

The definitions of this vocabulary (the functions sum and range) will still
involve loops, counters, and other incidental details. But because they are
expressing simpler concepts than the program as a whole, they are easier to
get right.

82

ABSTRACTION

In the context of programming, these kinds of vocabularies are usually called
abstractions. Abstractions hide details and give us the ability to talk about
problems at a higher (or more abstract) level.

As an analogy, compare these two recipes for pea soup. The first one goes
like this:

Put 1 cup of dried peas per person into a container. Add water
until the peas are well covered. Leave the peas in water for at least
12 hours. Take the peas out of the water and put them in a cooking
pan. Add 4 cups of water per person. Cover the pan and keep the
peas simmering for two hours. Take half an onion per person. Cut
it into pieces with a knife. Add it to the peas. Take a stalk of
celery per person. Cut it into pieces with a knife. Add it to the
peas. Take a carrot per person. Cut it into pieces. With a knife!
Add it to the peas. Cook for 10 more minutes.

And this is the second recipe:

Per person: 1 cup dried split peas, half a chopped onion, a stalk of
celery, and a carrot.

Soak peas for 12 hours. Simmer for 2 hours in 4 cups of water (per
person). Chop and add vegetables. Cook for 10 more minutes.

The second is shorter and easier to interpret. But you do need to understand
a few more cooking-related words such as soak, simmer, chop, and, I guess,
vegetable.

When programming, we can’t rely on all the words we need to be waiting for
us in the dictionary. Thus, we might fall into the pattern of the first recipe—
work out the precise steps the computer has to perform, one by one, blind to
the higher-level concepts that they express.

It is a useful skill, in programming, to notice when you are working at too
low a level of abstraction.

ABSTRACTING REPETITION

Plain functions, as we’ve seen them so far, are a good way to build abstractions.
But sometimes they fall short.

It is common for a program to do something a given number of times. You
can write a for loop for that, like this:

83

for (let i = 0; i < 10; i++) {
console.log(i);

3

Can we abstract “doing something N times” as a function? Well, it’s easy
to write a function that calls console.log N times.

function repeatLog(n) {
for (let i = 0; i < n; i++) {
console.log(i);
}
}

But what if we want to do something other than logging the numbers? Since
“doing something” can be represented as a function and functions are just
values, we can pass our action as a function value.

function repeat(n, action) {
for (let i = 0; i < n; i++) {

action(i);
}
}
repeat(3, console.log);
// - @
// =1
// - 2

We don’t have to pass a predefined function to repeat. Often, it is easier to
create a function value on the spot instead.

let labels = [];

repeat(5, i => {
labels.push(*Unit ${i + 1}');

1)

console.log(labels);
// - ["Unit 1", "Unit 2", "Unit 3", "Unit 4", "Unit 5"]

This is structured a little like a for loop—it first describes the kind of loop
and then provides a body. However, the body is now written as a function
value, which is wrapped in the parentheses of the call to repeat. This is why
it has to be closed with the closing brace and closing parenthesis. In cases like

84

this example, where the body is a single small expression, you could also omit
the braces and write the loop on a single line.

HIGHER-ORDER FUNCTIONS

Functions that operate on other functions, either by taking them as arguments
or by returning them, are called higher-order functions. Since we have already
seen that functions are regular values, there is nothing particularly remarkable
about the fact that such functions exist. The term comes from mathemat-
ics, where the distinction between functions and other values is taken more
seriously.

Higher-order functions allow us to abstract over actions, not just values.
They come in several forms. For example, we can have functions that create
new functions.

function greaterThan(n) {
return m => m > n;
}
let greaterThan10@ = greaterThan(10);
console.log(greaterThan10(11));
// = true

And we can have functions that change other functions.

function noisy(f) {
return (...args) => {
console.log("calling with", args);
let result = f(...args);
console.log("called with", args,
return result;
s
}
noisy(Math.min) (3, 2, 1);
// = calling with [3, 2, 1]
// - called with [3, 2, 1] , returned 1

, returned", result);

We can even write functions that provide new types of control flow.

function unless(test, then) {
if (!test) then();
}

85

repeat(3, n => {
unless(n % 2 ==1, () => {
console.log(n, "is even");

s
1

// - @ is even
// = 2 is even

There is a built-in array method, forEach, that provides something like a
for/of loop as a higher-order function.

["A", "B"].forEach(l => console.log(l));
// > A
// > B

SCRIPT DATA SET

One area where higher-order functions shine is data processing. To process
data, we’ll need some actual data. This chapter will use a data set about
scripts—writing systems such as Latin, Cyrillic, or Arabic.

Remember Unicode from Chapter 1, the system that assigns a number to
each character in written language? Most of these characters are associated
with a specific script. The standard contains 140 different scripts—=81 are still
in use today, and 59 are historic.

Though T can fluently read only Latin characters, I appreciate the fact that
people are writing texts in at least 80 other writing systems, many of which I
wouldn’t even recognize. For example, here’s a sample of Tamil handwriting:

@&’;Tﬂrm @ﬁ?ﬁog’)ﬂmq qlff;y:@ff)ﬁf) ,@f@;jﬂ)rrmﬂ
« - (la
- " - Q .
(ﬁ}mrﬁmm (’Dﬁ‘u)é)j A _sv .

The example data set contains some pieces of information about the 140
scripts defined in Unicode. It is available in the coding sandbox for this chapter
(https://eloquentjavascript.net/code#5) as the SCRIPTS binding. The binding
contains an array of objects, each of which describes a script.

{
name: "Coptic",
ranges: [[994, 10081, [11392, 115081, [11513, 11520]],

86

https://eloquentjavascript.net/code#5
https://eloquentjavascript.net/code#5

direction: "ltr",

year: -200,

living: false,

link: "https://en.wikipedia.org/wiki/Coptic_alphabet"

Such an object tells us the name of the script, the Unicode ranges assigned to
it, the direction in which it is written, the (approximate) origin time, whether
it is still in use, and a link to more information. The direction may be "1tr"
for left to right, "rtl" for right to left (the way Arabic and Hebrew text are
written), or "ttb" for top to bottom (as with Mongolian writing).

The ranges property contains an array of Unicode character ranges, each of
which is a two-element array containing a lower bound and an upper bound.
Any character codes within these ranges are assigned to the script. The lower
bound is inclusive (code 994 is a Coptic character), and the upper bound is
non-inclusive (code 1008 isn’t).

FILTERING ARRAYS

To find the scripts in the data set that are still in use, the following function
might be helpful. It filters out the elements in an array that don’t pass a test.

function filter(array, test) {
let passed = [1;
for (let element of array) {
if (test(element)) {
passed.push(element);
3
}

return passed;

3

console.log(filter(SCRIPTS, script => script.living));
// - [{name: "Adlam", ..}, ..]

The function uses the argument named test, a function value, to fill a “gap”
in the computation—the process of deciding which elements to collect.

Note how the filter function, rather than deleting elements from the ex-
isting array, builds up a new array with only the elements that pass the test.
This function is pure. It does not modify the array it is given.

Like forEach, filter is a standard array method. The example defined the

87

function only to show what it does internally. From now on, we’ll use it like
this instead:

console.log(SCRIPTS.filter(s => s.direction == "ttb"));
// - [{name: "Mongolian", ..}, ..]

TRANSFORMING WITH MAP

Say we have an array of objects representing scripts, produced by filtering the
SCRIPTS array somehow. But we want an array of names, which is easier to
inspect.

The map method transforms an array by applying a function to all of its
elements and building a new array from the returned values. The new array
will have the same length as the input array, but its content will have been
mapped to a new form by the function.

function map(array, transform) {
let mapped = [];
for (let element of array) {
mapped.push(transform(element));

}

return mapped;

}

let rtlScripts = SCRIPTS.filter(s => s.direction == "rtl");
console.log(map(rtlScripts, s => s.name));
// - ["Adlam", "Arabic", "Imperial Aramaic", ..]

Like forEach and filter, map is a standard array method.

SUMMARIZING WITH REDUCE

Another common thing to do with arrays is to compute a single value from
them. Our recurring example, summing a collection of numbers, is an instance
of this. Another example is finding the script with the most characters.

The higher-order operation that represents this pattern is called reduce (some-
times also called fold). It builds a value by repeatedly taking a single element
from the array and combining it with the current value. When summing num-
bers, you'd start with the number zero and, for each element, add that to the

88

sum.

The parameters to reduce are, apart from the array, a combining function
and a start value. This function is a little less straightforward than filter and
map, so take a close look at it:

function reduce(array, combine, start) {
let current = start;
for (let element of array) {
current = combine(current, element);

}

return current;

b

console.log(reduce([1, 2, 3, 41, (a, b) => a + b, 0));
// - 10

The standard array method reduce, which of course corresponds to this
function, has an added convenience. If your array contains at least one element,
you are allowed to leave off the start argument. The method will take the first
element of the array as its start value and start reducing at the second element.

console.log([1, 2, 3, 4].reduce((a, b) => a + b));
// - 10

To use reduce (twice) to find the script with the most characters, we can
write something like this:

function characterCount(script) {
return script.ranges.reduce((count, [from, to]) => {
return count + (to - from);

¥, 9);
}

console.log(SCRIPTS.reduce((a, b) => {
return characterCount(a) < characterCount(b) ? b : a;

D)

// - {name: "Han", ..}

The characterCount function reduces the ranges assigned to a script by sum-
ming their sizes. Note the use of destructuring in the parameter list of the
reducer function. The second call to reduce then uses this to find the largest
script by repeatedly comparing two scripts and returning the larger one.

89

The Han script has more than 89,000 characters assigned to it in the Unicode
standard, making it by far the biggest writing system in the data set. Han
is a script (sometimes) used for Chinese, Japanese, and Korean text. Those
languages share a lot of characters, though they tend to write them differently.
The (U.S.-based) Unicode Consortium decided to treat them as a single writing
system to save character codes. This is called Han unification and still makes
some people very angry.

COMPOSABILITY

Consider how we would have written the previous example (finding the biggest
script) without higher-order functions. The code is not that much worse.

let biggest = null;
for (let script of SCRIPTS) {
if (biggest == null ||
characterCount(biggest) < characterCount(script)) {
biggest = script;
3

}
console.log(biggest);

// - {name: "Han", ..}

There are a few more bindings, and the program is four lines longer. But it
is still very readable.

Higher-order functions start to shine when you need to compose operations.
As an example, let’s write code that finds the average year of origin for living
and dead scripts in the data set.

function average(array) {
return array.reduce((a, b) => a + b) / array.length;

3

console.log(Math.round(average(

SCRIPTS.filter(s => s.living).map(s => s.year))));
// > 1165
console.log(Math.round(average(

SCRIPTS.filter(s => !s.living).map(s => s.year))));
// -~ 204

So the dead scripts in Unicode are, on average, older than the living ones.

90

This is not a terribly meaningful or surprising statistic. But I hope you’ll agree
that the code used to compute it isn’t hard to read. You can see it as a pipeline:
we start with all scripts, filter out the living (or dead) ones, take the years from
those, average them, and round the result.

You could definitely also write this computation as one big loop.

let total = @, count = 0;
for (let script of SCRIPTS) {
if (script.living) {
total += script.year;

count += 1;
}
}
console.log(Math.round(total / count));
// > 1165

But it is harder to see what was being computed and how. And because
intermediate results aren’t represented as coherent values, it’d be a lot more
work to extract something like average into a separate function.

In terms of what the computer is actually doing, these two approaches are
also quite different. The first will build up new arrays when running filter
and map, whereas the second computes only some numbers, doing less work.
You can usually afford the readable approach, but if you're processing huge
arrays, and doing so many times, the less abstract style might be worth the
extra speed.

STRINGS AND CHARACTER CODES

One use of the data set would be figuring out what script a piece of text is
using. Let’s go through a program that does this.

Remember that each script has an array of character code ranges associated
with it. So given a character code, we could use a function like this to find the
corresponding script (if any):

function characterScript(code) {
for (let script of SCRIPTS) {
if (script.ranges.some(([from, tol]) => {
return code >= from && code < to;
) A
return script;
}
}

91

return null;

3

console.log(characterScript(121));
// = {name: "Latin", ..}

The some method is another higher-order function. It takes a test function
and tells you whether that function returns true for any of the elements in the
array.

But how do we get the character codes in a string?

In Chapter 1 I mentioned that JavaScript strings are encoded as a sequence
of 16-bit numbers. These are called code units. A Unicode character code
was initially supposed to fit within such a unit (which gives you a little over
65,000 characters). When it became clear that wasn’t going to be enough,
many people balked at the need to use more memory per character. To address
these concerns, UTF-16, the format used by JavaScript strings, was invented.
It describes most common characters using a single 16-bit code unit but uses
a pair of two such units for others.

UTF-16 is generally considered a bad idea today. It seems almost inten-
tionally designed to invite mistakes. It’s easy to write programs that pretend
code units and characters are the same thing. And if your language doesn’t use
two-unit characters, that will appear to work just fine. But as soon as some-
one tries to use such a program with some less common Chinese characters,
it breaks. Fortunately, with the advent of emoji, everybody has started us-
ing two-unit characters, and the burden of dealing with such problems is more
fairly distributed.

Unfortunately, obvious operations on JavaScript strings, such as getting their
length through the length property and accessing t